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Introduction

This lecture explains the nonlinear control theory, especially Lyapunov methods.

Fundamentals of nonlinear system  Expressions of nonlinear system, vector field on
manifold, existence and uniqueness of ordinary differential equation

Exact linearization ~ Exact |/O linearization, zero dynamics, semi-global stabilization
and peaking, Exact state linearization

Lyapunov method  Lyapunov function, dissipative inequality, passivity, Sontag-type
controller, input-to-state stability (ISS)

(BE) IWWMEEELHS: NMTVYRIRTLOBRHE (N\1TVY ROXTLOETI),

RESRIEFNS XTLETI (FEREOHREFAEARE), ETNFHHE (BREHER
EHEEE, BEBRTRFERE, 4251 VA 4751 UEE)
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This document

You can download this documentation (PDF) at

http://stlab.ssi.ist.hokudai.ac.jp/yuhyama/lecture/tokuron/

This document will be revised frequently.
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Nonlinear ordinary differential equation with input

Continuous-time nonlinear system:
@ Input-Affine System (A7 7 1 > R)

m

i = fz) +Gloyu=flz)+ > gi(z)y
=1
y = h(z)

x - state, u(€ R™) - input, y(€ RY) -- output
@ General Nonlinear System

&= f(z,u)
y = h(z)

x - state, u(€ R™) - input, y(€ RY) - output
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State-space of nonlinear systems

System state = denotes a point of an n-dimensional C'>° manifold (C°° Z#k{X).
@ (C'°° manifold: Hyper surface having a uniform dimension.
@ Infinite times differentiations are available on the manifold

C*-diffeomorhism
N
Ve¢' o For each point of the
manifold M, there exists a
local neighborhood that is
C* diffeomorphic to R™(=

4 n-dimensional Eucliean

C*-diffeomorhism space). = Local coordinate

@ There exists a C*° diffeomorphism between two neighborhoods, where its
domain is the intersection of the two set. = Coordinate transformation (EEAE
Zia)

@ M can be covered by some neighborhoods.

> 27 LIRS
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Tangent space

[Question] What space does 4 belong to?

Tangent space (M) of a point p is
diffeomorphic to R™.

T,M ~ R"

Let 7'M denote the union of the tangent spaces of all points.

In the local sense, both of x and & are n-dimensional. In the global sense, we
recognize that
xeM, (xr,z)eTM.

o Practically, it is useful to introduce a local coordinate to x which derives a
natural coordinate on the space of z.

@ In a local sense, T'M;; has a structure of direct product M;; x R™. However,
it is not correct globally. = T'M may be ‘twisted.

> 27 LIRS R
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Tangent space (Example of 3D-rotation)

An attitude of a rigid body can be expressed by an orthogonal matrix with a
positive determinant R € SO(3).

R'R=1, det R =1
= The degree of freedom is three
Kinematic equation:
R=Sw)R
0 w3y —Wy
Sw)=|—ws 0 Wy
wy, —w; 0

R belongs to a 3-D space when R is
fixed. It is parameterized by a vector
Spacé w = (w17w27w3)T

R cannot be determined by only w.
The value of R is required to deter-
mine it.

> 27 LR
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Conclusion of “nonlinear system expression”

@ The input-affine systems are well studied as expressions of nonlinear
dynamical systems.

@ The state x is a point of a n-dimensional differential manifold, and it is not a
vector space generally.

@ However, & belongs to a n-dimensional Euclidean space when z is fixed.

@ The right-hand side of = f(xz) is called a vector field (N7 kJL33).

W # (EEERT KAFIRIEREFHER)

> 2T LHIEIERR 2021 & BEZ—L 7/161




Solution of ODE

Problem
Given an ODE
&= f(z), zeR”

with an initial condition x(0) = x, find a solution x(t) (¢ > 0) of the ODE.

@ Does the solution exist? (FRDTETEM)
@ Suppose that a solution exists. Is it a unique solution?  (FRDME—)

T # (UEERT AFRIEREFHITR)
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ODE having no solution

An example of ODE having no solution:

—2 +

At a glance, the state tends to z = 0 in a finite time. After = gets to 0, the
derivative @ should be also zero.
However, (x,2) = (0,0) does not satisfy the original ODE.

T # (LEERTF AFBRIEREFHTNR)
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ODE having multiple solutions

An example of ODE having multiple solutions:

& = sgn(x) V/]x]

X

ime

—1 +

The ODE with an initial condition (0) = 0 has an infinite number of solutions.

T # (UEERT AFRIEREFHIR)
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Lipschitz condition

Definition

A map f(z) satisfies the Lipschitz condition on a connected open set U, if there
exists M (> 0) such that

If(2q) = f(@)| £ M|xy — 5| for all x4y, 2, € U.

= A weak concept of differentiability

If f(z) is Lipschitz on the universal set (e.g. R™), f(z) is called globally
Lipschitz.

If for each x, there exists a neighborhood U, such that f(x) is Lipschitz on U,,
f(z) is called locally Lipschtz.
Note that the values of M may be different for the neighborhoods.

W # (EEERT KAFIRIEREFHTR)
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Lipschitz condition (example)

e

No Lipschitz Continuous but
(discontinuous) no Lipschitz

L

Locally Lipschitz Globally Lipschitz
but not globally
Lipschitz (y = x?)

Lipschitz

2 27 LSRR
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Sufficient conditions of the existence of a unique solution

o (Theorem of Picard-Lindelof) If f(x) is locally Lipschitz, there exists a
positive T such that the ODE & = f(x) with an initial condition z(0) = z,
has a unique solution for 0 < ¢ < 7. The value of T depends on the initial
value z;.

o (Extension of the solution) If f(x) is globally Lipschitz, = f(x),

2(0) = x, has a unique solution globally, i.e., for —oo < t < 0.

B An example of ODE having local solution: i = 2% (Locally Lipschitz)
« Finite Escape Time

[Finite Time BlowupJ

Time

In this case, the solution diverges in finite time.

> 2T LIRS 2021 F BLZ—L 13 /161
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Sufficient conditions of the existence of solutions

o (Peano existence theorem) If the uniqueness of the solution is not required,
we can weaken the condition of the Picard-Lindelof's theorem, i.e., only the
continuity of f(x) is necessary.

@ A variance of the Peano existence theorem for time-variant ODEs exists.

o Carathéodory’s existence theorem gives a further generalization.

@ For more details, see the following famous book of Coddington & Levinson:

E.A. Coddington, N. Levinson: Theory of Ordinary Differential Equations,
McGraw-Hill (1955).

> 27 LR
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Exact linearization

Nonlinear plant 4+ Nonlinear control law — Linear closed-loop system ‘

o Finally obtained linear system has a different coordinate of state from the
original nonlinear system. (Nonlinear coordinate transformation)

@ This method is based on no approximation, and therefore it is called exact
linearization.

@ The exact-linearization technique includes ‘exact input-output linearization’
(EZ A F758H21E) and ‘exact state-space linearization’ (BAZIRAEZE AR
k).

@ As a mathematical tool, we use Lie derivative. Moreover, we also utilize Lie
bracket and Frobenius theorem for the state-space linearization cases.

> 2T LHIEIERR 2021 F BL—L 15 /161
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The case of mechanical system

Mechanical system (e.g. robots) J

M(6)8 4 ¢(0,6) + g(6) = u

We can apply a feedback
u=c(6,0) + g(0) + M(O)v

to this system. The closed-loop system is linearized as 6= v.

@ This is well-known technique in Robotics.
@ This method cancels nonlinear term via feedback.

Can we apply this method to general cases? )

T # (UEERT AFRIEREFHITR)
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Concept of exact 1/O linearization

For the system

we use a state feedback
u=a(x)+ Bz)v

to exactly linearize the |/O behavior from v to y.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Linear system

T # (EEERT AFBRIEREFHR)
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Lie derivative

Main mathematical tool of exact linearization = Lie derivative (') —#§%3)
Lie derivative operators (') =93 EFI3) can be applied to general tensors, but
in our case we use only a subset.

o Lie derivative that is applied to usual functions
(Local coordinate expression)

h(z): M — R (a function of z)
flx): M —TM (vector field)

(L) =3 ) = D)
i=1 1

oz
@ Repeat of the operators

(LyLsh)(x) = (Ly(Lsh))(x)
(Lh)(@) = (L(Ly(- (Lh)-)))(x)

k—times

T # (UEERT AFRIEREFHIR)
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Practical meaning of Lie derivative

Suppose that x(¢) moves along a solution of the system without input

&= f(z)
Consider a function y = h(x). Its time derivative can be calculated as

dy _ Oh(z)dx _ Oh(z)

dt 9z dt Oz

f(@) = (Lgh)(x)

L ¢h is the time derivative of h(z), which is a function of x, along the trajectory ofJ

ik = jf(@)-

W # (EEEAT KAFIRIEREFHER)

> 2T LHIEIEREER 2021 fF HE—L 19/161




Differentiation of output by ¢

Consider a single-input single output system:

&= f(x) +g(x)u
y = h(z)

Differentiation of output by ¢
. Oh dx _Oh

V= s %(f(l’) + g(@)u)
= (Lpyguh) (@, uw) = Lih(z) + Lyh(z)u

Applying L. ., to h(z), which is a function of z, is equivalent to obtaining the
time derivative of h(x)

Linear cases:
y=C(Az + Bu) = CAz + CBu

T # (UEERT AFRIEREFHIR)
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Is twice differentiation possible?

Question

Does
dky R

ar = Lol

hold generally?

The answer is NO. It is because the result of the first derivative

Y= (Lf-&-guh)(x(t)a u(t))
is not a function of solely x. It becomes a function of = and u generally.

. d .
Y= E(Lﬂguh)(% w) = LprguLgh+ Ly g Lgh-uwAi- Lgh

— If L,k is nonzero and u(t) is nondifferentiable, y(¢) is not twice differentiable.

To differentiate y(t) twice, L h should be zero generally.

- = - = = atela

WTF # (EEERTF AFRIEREFHIER)
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If L,h # 0
o If in the time-derivative of the output
y = Lsh(z)+ L,h(z) - u
the coefficient of u is nonzero, i.e., (L h)(z) # 0, then

—L:h(z)+v
b .
U=-—7—"7-—" = Y=
Lyh(z)

I/O behavior from the new input v to y is linearized = Canceling nonlinear terms )

@ For practical cases, a further feedback with pole assignment is required.

For example, the derivation of a physical position gives a velocity, which is a state

However, there exist cases with Lgh =0.
and includes no input term. }

= Twice differentiation

> 27 LR
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Twice differentiation of y

If L,h =0, y can be differentiated twice.

‘ Assumption: L h =0

\
If L,L¢h(z)+# 0, the system can be linearized by

_ —L?ch(x) +v

W # (EEERT KAFIRIEREFHER)
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Three-times differentiation...

e Assumption: L h =0, L ,L;h =0

d3y
i Lf+guL?ch = L:}h(:r) + LgLfch(ac) "
4

If LgLfch(a:) # 0, the system can be linearized by

= M :> @ =
L,L2h(x) d?

@ ...and so forth on.

T # (UEERT AFRIEREFHIR)
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Relative degree

Definition of relative degree (FEX$XRER)

The output y has a relative degree p at a point z, if there exists a neighborhood
U,, of zy such that

(LyLih)(z) =0, i=0,..,p—2,"z€ U,
(LyL5 ™ h)(m,) # 0

If a relative degree p exists, the output can be differentiate p-times.

Y= th(x)
j= L?h(x)

dr—ly
dte—1
dPy

= Lfch(m) + LgL?lh -u | p-times diff. — u appears explicitly

= L 'h(x)

T # (EEERT AFBRIEREFHR)
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Relative degree of linear systems

@ Linear system

T = Az + bu

y=cx
is a special case of nonlinear system. —
flz) =Az, g(z)=0b, h(z)=cx
o Relative degree p of linear system
chb =cAb=cA?b = - =cAP2b =0, cAPIb+0

— Difference of the orders of the denominator and numerator polynomials of
the transfer function (Equivalent to the usual definition)

T # (UEERT AFRIEREFHIR)
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|/O exact linearization for SISO systems

o If the system has a relative degree p, the output can be differentiated p-times:

dPy _
i = Lihle) + L, L} "h(z) - u
o A feedback
—Lih(z) +v

L, LY h(z)

linearizes 1/O behavior as
d’y

dte

o A further linear feedback of y = h(z), § = Lh(x),...d" 'y /dir = L;_lh(x)
(= nonlinear feedback of x) can perform pole assignment.
Adding integrator or feedforward terms are also available.
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Vector relative degree
Consider multi-input multi-output systems (¢ < m).

Definition:
The system has a vector relative degree (py, ..., p,) at a point z, if there exists a
neighborhood U, ~of z such that
(LgkL’J}hj)(x) =0, j=1,...,4,i=0,..,p; -2,
k=1,..,m, 'z eU,
=il =il
LglL’]Z1 hy(zg) LgmL;’c1 hq(zg)

rank : =/
=il =il
Lg, Lff hy(zo) - Ly, L;Z hy(xo)
=G(z) )
Then, T\ (L@
: = : + G(z)u
e L hy(x)

T # (UEERT AFRIEREFHIR)
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|/O linearization of MIMO system

Suppose that there exists a vector relative degree

@ For example, by using a psuede inverse,

Lt hy (x)
u=G'(2)(G(x)GT(x)"! 4 — : +v
L?'Z h(x)
linearlizes the system as
dPlyl
dtP1
: =0
arty,
diPe

@ For the cases of square system (m = /), the simple matrix inverse G(x)~!
can be utilized instead of the psuede inverse G (x)(G(z)G " (x))~ .

T # (EEERT AFBRIEREFHR)
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Cases with no vector relative degree

Cases with no vector relative degree include

@ cases when a relative degree can be recovered by a linear output coordinate
transformation,

@ cases when 1/0 linearization is available by adding a linear reference model
system,

@ cases when 1/0 linearization is available by a dynamic feedback,

@ cases when /0 linearization is available by making a part of state space
uncontrollable by partial inputs,

@ and cases when |/O linearization is impossible.

T # (UEERT AFRIEREFHIR)
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Example — Two wheeled vehicle (1)

Two wheeled vehicle

1 = Uy COS Tg
(x; +dcosx;,x,+dsinx;)

Ty = Uy Sinzg

ft3:U2 \

(x1,x4) *+* Cartesian coordinate of the
center of axle

x5 *** Heading angle

uy *** Vehicle velocity (input 1)

uy -+ Yaw rate (input 2)

We consider an output which is the Cartensian coordinate of the front of the

vehicle
z, +dcosxy
y= To + dsinx
2 3

for the regularity of G(x).

W # (EEERT KAFBRIEREFHER)
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Example — Two wheeled vehicle (2)

Vector relative degree: r = (1,1)
Time-derivative of the output:

)= Gla)u = [cos:c3 dsinx3] (u1>

sinzg dcoszs | \uy

If d # 0, G(z) is nonsingular.

Control law

COS g sin x4 7+ k{r, — (z1 + dcoszs)}
—sinzz/d cosxz/d| \ 7, + k{r, — (x5 +dsinxs)}

(r4,7,) ** Reference coordinate of the front of the car

2 27 LSRR
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Conclusion of exact |/O linearization

o Relative degree is defined as the times of time-derivative of the output where
an input appears explicitly.

@ By canceling nonlinear term and coefficient of the relative-degree-times of
time-derivatives of the output, exact |/O linearization is realized.

@ In the exact /O linearization, a further feedback with pole assignment is
often used for the stabilization.

@ The order of the obtained dynamics representing |/O behavior is equal to the
relative degree. Hidden dynamics will be referred in the next section.

@ Exact 1/0 linearization of MIMO systems are also possible, under the
assumption of the existence of vector relative degrees.

T # (EEERT AFBRIEREFHR)
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Normal Form

@ The original system is n-dimensional, while the order of the 1/O-behavior
dynamics in the closed-loop system is p.
What is the difference n — p?

e Coordinate transformation ®(z): z — (27,¢7)7

2y =), 2y = Lih(x), ..., 2, = L‘}flh(m)

The coordinate of £ should be chosen to make the Jacobian matrix
nonsingular.

Normal Form
Yy=2z
Z) = 2y
4= LGh(@7(2,6)) + LI h(@ 7 (2,)) -
&=7(2,8) + (2, &)u

In the case of SISO systems, making ((z,&) = 0 is possible by choosing suitable

coordinates.
WTF # (tBEXF KFRIEREFHIER)
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Selection of Coordinate for ((-) =0

The coordinate of £ should be chosen to establish ((-) = L,§ = 0.

The number of the independent solutions of the partial differential equation:

Ey—o

L = =
P 927

is n — 1. (Frobenius theorem, which will be described later)
The state of the 1/O dynamics 2y,..,z, ; are also the solutions.

The coordinate of £ should be chosen as n — p functions from the solutions that

are independent from 20 Zp -

> 27 LIRS R
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Zero dynamics

Suppose that the output is restricted to zero, i.e., y = 0.
Time derivatives of y are also zero, so z = 0 holds. The input on the hypersurface
z=20Iis )

L Ly h(®7(0,€))

LoR(® 10, 9))

@ By substituting it, we obtain n — p dimensional zero dynamics

| L, Ly ' h(@1(0,€))
&=~(0,&) —¢(0,¢) L’;h(q)—l((),f))

This part vanishes when ((z,£) =0

@ When y is not zero,

» by giving the reference signal of y as a function of time, or
» by considering an exo-system that generates the reference of y,

we can define zero-error dynamics.

T # (UEERT AFRIEREFHIR)
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Zero dynamics of linear system

Example of linear case:

jc:[(l) }]H(_ll)u = G(S)=—S_1

251
y=(0 1)z e
Exact 1/0O-linearization control law: v = —z; — 2, + v
Closed-loop system:
x’—[l 2:|.’B+<_1>U =T
0 0 1 = G(s)= ——
s(s—1T

y=(0 1=z

For linear systems, exact |/O linearization performs a pole assignment where

o transfer zeros are canceled (= unobservable dynamics),
@ and rest poles are assigned to zero.

> 27 LIRS
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Nonlinear non-minimum-phase system

Zero dynamics are invariant dynamics under feedbacks, which is similar to the fact
that in linear cases transfer zeros are invariant under feedbacks.

o Definition: The system is called non-minimum phase, when its zero
dynamics are unstable.

@ Exact 1/0O linearization is not applicable to non-minimum phase systems.
— It generates unstable internal dynamics which are unobservable.

T # (UEERT AFRIEREFHIR)
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Stability of cascaded system

o Lemma: Consider a system

i = f(z)
2=9(z) + 7z, 2)x

where & = f(x) and 2 = g(z) are locally asymptotically stable, and y(z, 2) is
differentiable. Then the system is also locally asymptotically stable.

o However, even when & = f(x) and Z = g(z) are globally asymptotically
stable, The whole system may not be globally asymptotically stable.

25

2

[Ex.] R
05 -
[
T =-—x " - Z
05 = =
; 3.2 =
Z=—z+2°T NN -y
NN >
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[ NN 4
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-2.5,
25 -2 1.5 1 0.5 25
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Global asymptotical stability

Due to this fact, the combination of
[Globally asymptotically stable zero-dynamics]
+ [Exact linearization with stable 1/O behavior]
does not mean global asymptotical stability.

[Example]
System: However, the closed loop system
becomes
j"l = x2 + u
Ty =z, + 2375 +u Ty = =1
L 2.3
Y=z Ty = —Ty + X123

Zero dynamics: = same as the previous slide

Ty =—x49 (GAS)
Control law: v = —x; — x4
1/0 behavior:

z; =—x; (GAS)

T # (UEERT AFRIEREFHIR)
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Peaking

Does making the error system fast solve this problem? J

The answer is NO.
For the cases with relative degree 2 or higher, fast error dynamics may reduce the
stability region.

Peaking

For the cases with relative degree 2 or higher, setting large absolute values of
poles of error dynamics may cause large transient response.

> 27 LIRS R
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Conclusion of zero dynamics

@ When the relative degree is lower than the system dimension, exact |/O
linearization generates “zero dynamics” which are unobservable.

@ Zero dynamics are invariant under feedbacks.

@ Exact 1/0 linearization cannot be applied to nonlinear non-minimum-phase
systems. (It causes unstable internal dynamics.)

@ Even when the zero dynamics are GAS, the controlled system with 1/0
linearization may not be GAS. Moreover, due to the peaking phenomenon,
selecting poles cannot realize the enlargement of the stability region,
generally.

> 27 LR
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Basic concept of exact state-space linearization

Exact I/O linearization is not applicable to nonlinear non-minimum-phase systems.
= Minimum-phase property depends on the definition of the output function h(x).

Problem J

Find an output function y = A(x) such that the relative degree is n.

@ Since n — p =0, no zero dynamics exists for such an output.
@ Therefore, exact /O linearization for A(x) establishes linearization of the
whole state-space. — Exact state-space linearization (EEIKREZEREHEAZL)

Is the reverse proposition true?

T # (EEEAT AFRIEREFHER)
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State-space linearization and existence of A(x)

o Assumption: There exist a state feedback u = a(z) + S(z)v (8(z) # 0)
and a coordinate transformation z = ®(x) such that the system can be
transformed into a linear controllable canonical form

0 1 0 0
“=lo w0 1 |[*t|o]Y
_ao cee _an_l 1

@ For the output z;, the closed-loop system has a relative degree n. Since
feedback preserves the relative degree, the relative degree of the original
system is also n for the output.

Theorem

An SISO input-affine nonlinear system can be converted into a controllable linear
system by a state feedback, if and only if there exists an output function \(x)
such that the relative degree coincides with the system dimension n.

T # (UEERT AFRIEREFHITR)
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Lie bracket (1)

Definition of Lie bracket (') —#E3l#&)
f(z), g(x): M — TM (vector fields)

,61(0) = 52 (@) — o9

()  (local-coordinate expression)

A measure of non-commutability between two vector fields.

T sec.
_.__.__.ZE__.:..g..(ZQ _____ — X
- - // ~~~~~~ .
e /E=rw
Tsec. / y
/ / T sec.
/T
P e 165
£ T sec.
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Lie bracket (2)

@ Various formulas (ay, ay: scalar constants)

f?g] = _[g?f]
arfi +asfe, 91 = ai[f1, 91 + as[fs, 9]
fra191 + asxgs] = aq[f, 1] + as[f, go]

£l Pl + g, [p, A1+ [p. [, 91l = 0
(Jacobi identity)

L[f,g] h=L¢L,h—L,Lh (IMPORTANT!)

T # (UEERT AFRIEREFHIR)
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Conditions of the output function

Conditions for the relative degree n

Condition 1 No input term appears until (n — 1)-times derivative
(LyA)(x) =0
(LyL ) (z) =0
(LgL?_Z)\)(a:) =0

Condition 2 An input term appears in the n-times derivative

(L, L3 M\)(z) # 0

These conditions will be reinterpreted by using Lie bracket.
Formula:
LiggA=LyL A —L,LeA

> 27 LR R
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Condition 1 ad s operator

We will express condition 1 by first-order partial differential equations as

LA=0 Definition
=0
LyLiX = —Ljp gLA+ Ly LyLe) Multiple application: .
-0 adkg = 1 [f > 9]
—'/_/
= L[fa[fu‘?]])\ o Lf L[f,g]>‘ =0 k—times
=0 No action case:
: adfg =g
n—2y __ n _
LLy 72X = (=1)"Lg 1., A = O
WTF # (tBEXE KFRIEREFHIER) > 27 LR R 2021 F HERZ—L 48 /161 WTF # (dUBEKRFE KFERIERRFEMER) > 2T LIRS 2021 & BEE—L 49/161

Another expression of Condition 1 Condition 2

. . By considering Condition 1, Condition 2 can be expressed b
Another expression of Condition 1 Y & P Y

(LD A\ (@) = =(Lip g LY 2A) (@) + (L Ly L2 X) (2)
(LyA)(x) =0 -0
(Log, oM (@) =0 = Laagg LA = LyLip g LA
: = —Laasg L} A+ LpLoga, LN = LyL, Ly ™2\ + L7L, L3\
(Lad?’zg/\)(x) =0 == (—1>n_1Lad;ﬂg)\ #0
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Conditions for A

Consequently, we obtain the following conditions:

Conditions for the output function

The necessary and sufficient condition that the output function A(x) should

satisfy is

T # (UEERT AFRIEREFHITR)

> 27 LIRS
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Independence of vector fields

Consider vector fields
g,adyg, ... ,ad} g

Reductio ad absurdum Suppose that ad’;g (kK <mn—1) is linearly dependent
upon g, adfg,...,ad’}’lg. Then, there exist coefficients ¢; such that

adfg(x) = co(2)g(x) + ¢; (v)adg(x) + - + ¢y (x)ad} ' g(z)

Then,

adj " g(z) = c(z)adpg(x) + (Lseo)(x)g(a)+
ot o_g(@)adfg(x) + (Lyep_s)(w)adf2g(x)
+ e a(@){co(@)g(@) + ey (2)adgg(2) + - + ¢ y(x)ad} ' g(x)}
+ (Lfck—Q)(x)adl;_lg(x)
holds. Hence, ad’}*sg(x) (s =1,2,...) are also linear dependent.

It contradicts the condition Lad?_lg)\(x) # 0. Therefore, these vector fields are
linearly independent under Conditions 1 and 2.

T # (EEERT AFBRIEREFHR)
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Necessary condition (A)

We obtain

Necessary condition of vector fields (A)

Vector fields
g,ad;g, ...,ad} g

are linearly independent. (=Sufficient condition of local accessibility)

T @ (UEERT AFRIEREFHIR)
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Integrability (1)

Condition 1 is equivalent to solving (n — 1) partial differential equations

(Lugy-2M) () =0

We do not consider trivial solutions (constant solutions), which do not satisfy
Condition 2.

O C[oa oa B B s
<%,p($)> - |:8_(E1’ ) E] p(l‘) - 07 p= g7adfga"' 7adf g

= One form &) /du is orthogonal to g, ad;g,..,ad}2g.

> 27 LIRS R
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Integrability (2)

In the n-dimensional space, there exists a nonzero one form that is orthogonal to
(n —1) vector fields g, adg,...ad’} ?g.

4

Let w(x) be the one form. Can we generate a function A\(x) with a scaling
function s(x) as s(x)(0A/0z) = w(x)?

The answer is negative. Further condition is necessary to the integrability.
— Frobenius Theorem

> 27 LIRS
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Frobenius Theorem

o Consider g partial differential equations L, A = 0,...,qu)\ =0on (z €)R",
where vector fields p; (), ..., p,(z) are linearly independent.

Frobenius Theorem

These PDEs have n — g independent solutions A, (z),..,A,,_,
distribution
A(z) = span{p, (2), ..., p, ()}

(2), if and only if the

is involutive.

@ A distribution means a space spanned by some vector fields.
o Definition: Distribution A(z) is called “involutive”, if

[01,0,] €A, Y5 €AV, €A

holds.

> 27 LIRS R

T # (EEERT AFBRIEREFHNR)

2021 fF HY—L 57 /161

Necessary condition (B)

A necessary condition of the existence of A(x):

Necessary condition for the vector fields (B)
Distribution
span{g(z),ad;g, ...,ad’} 2g}

is involutive.

> 27 LR
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Necessary and sufficient condition of exact state-space
linearization

Theorem
A necessary and sufficient condition of the exact state-space linearization is
@ The distribution
A, = span{g,ad;g, ...,ad} 'g}
has a dimension n.
@ The distribution
A,y = span{g,ad;g, ...,ad} g}

is involutive.

@ The necessity is obvious.
@ The sufficiency can be shown by constructing a control law.

> 27 LIRS R
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Construction of control law (1) Construction of control law (2)

o Coordinate transformation:

PDE Ls\(z) =0 (6 € A,,_,) has one non-trivial solution \(x). z; = \x)
29 = (L) (x
40 2.(f)() o a(a)
2 ad p 1r171 :
e l9,adg, ...,ad} " g] = [0, ..., 0, Lad?—lg)\} ' . oz, = (L}l_l)\)(x)
Regular (from conditions) Therefore,——this < NONZEro o System with new coordinate:
Therefore, we can show 0 1 0 0
LA =L, LA ==L, L1"2A=0 o0 1T 0o
- 0 - 0 LN+ L L7 X\ u
LIy 'IA#0 ! 9 f
Hence the system has a relative degree n for the output A(z). o Control law: B L A(z) v

- — — + —
LUy 'Az)  LyLF*Ma)
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Example — Magnetic levitation system (1) Magnetic levitation system (2)

Equilibrium when e = ¢, (constant):

Magpnetic levitation system: R e (z ) ( JRe IR VIIG) — -
s s <0
0 )

i\’ | =
Mi=MG-K- s cs/ R
z+ 2 L
d . — _ s s s \T
e =Ri+ L{L(2)i} State: © = (z — z,, 2,7 — i)
dt z Input: u=e—e,
2K "
L(z) = 4L, State equation:
zZ+ 2z
Magnetic levitation system To 0
N2
z —Gap between ball and magnet z, — Correction constant of gap i=|G— K(xg + i) + 0 u
i — Current R — Electrical resistance Mz, + 2z, + %) 1/L(z, + 2,)
e — Voltage L(z) — Inductance (function of z) o(x) LT s
M — Mass of ball L, — Inductance on leakage flux 1 2K w4 +1,)
— i i = 2 — ici z)=————— | Rzxg+ ———=—35
G — Acceleration of gravity K (= pyN?S/4) — Coefficient of force o(x) L(z, + 2.) ( 3 @ + 20 + Zs)2>
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Magnetic levitation system (3)

0
g(z) = ( 0 )
1/L(%y + z,)
0
2K (zq + i)

adfg = [f, g] == M(l‘l + ZO +;€S)2L(£E1 + ZS)

Ly + 2,2
_ 2K (zg + 1)
addg = [f.(f.gl) = | MO F R RS (

X
*

Condition (A) is satisfied.

rankAy = rank{f, [f, g, [f,[f, gll} = 3

T # (UEERT AFRIEREFHIR) > 27 LIRS

Detail is omitted.
The first element
is nonzero.
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Magnetic levitation system (4)

Condition (B) is also satisfied.

e {3) 0]

The first element of a vector field in A, is always zero.

0
2K

M(xy + 29 + 24)2 L(wy + x,)?
0

9.1, 9] = €A,

= A, is involutive.

I/O linearization with an output A\ = z; attains the state-space linearization of theJ
system.

W # (EEERTF AFBRRIEREFHER) > 27 LIRS R 2021 fF HY—L 65 /161

Conclusion of state-space linearization

@ This method exactly linearizes a system via a state feedback and a coordinate

transformation.

@ A nonlinear system can be converted into a controllable linear system, if and
only if there exists an output function with a relative degree n.
o It is relatively difficult to satisfy the condition, because it includes an

integrability condition.

@ However, most two-dimensional systems are exactly linearizable.

T # (UEERT AFRIEREFHIR) > 27 LR

Some higher-order systems originally have structures of linearizability.
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Equilibrium

Equilibrium (F#R)
For an autonomous system
& = f(z)

an equilibrium (point) & = z; is a point such that f(xz,) = 0.

@ Redefinition of the state coordinate where the origin z = 0 coincides with the
equilibrium is often used. This procedure can be done without loss of
generality.

o At the quilibrium, & = 0 holds, i.e., the state is retained under the flow (the
set of all orbits).

@ In this section, we consider the stability properties of an equilibrium.

W # (EEERT KAFIRIEREFHER) > 27 LR 2021 fF HY—L 67 /161




Definition of stability (1)
Boundedness (FEDH R %)

A solution of a system & = f(z) starting from a neighborhood of its equilibrium
x = 0 is bounded, if there exists a norm bound K (z(0)) such that
lz(®)] < K(2(0)) (¢ > 0).

(Local) Stability — LS (BPIREM)

An equilibrium z = 0 of a system & = f(x) is (locally) stable, if for any € > 0
there exists d(e) > 0 such that

|z(0)] < 6(e) = [ (t;2(0))] <&t >0

o (Stable) C (Bounded)

@ For systems whose equilibrium x = 0 is stable, a solution starting from a
neighborhood of the origin stays around the origin. For the case of limit
cycle, the solutions are bounded but the origin is unstable.

@ We call local stability ‘Lyapunov stability.

@ The subject of the stability is an equilibrium, and is not a system.

T # (UEERT AFRIEREFHIR)

> 27 LEIERER 2021 & BA—L 68 /161

Definition of stability (2)

Attractiveness (T%5|1%)

If there exists a neighborhood U of the origin such that a solution starting from U
satisfies |x(t; 2(0))| — 0 (¢ — o0), the origin is called attractive. Then, U is
called a domain of attraction.

(Local) Asymptotical Stability — LAS (BPFTEHEZRE M)

An equilibrium = = 0 of a system & = f(z) is called (locally) asymptotically
stable, if z = 0 is stable and attractive.

Asymptotically stable Neutrally stable Unstable

Lyapunov stable

> 27 LIRS R
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Definiton of stability (3)

Global Stability — GS (KIFMZEM)

An equilibrium 2 = 0 of a system & = f(x) is called globally stable, if z =0 is
stable and any solutions are bounded.

Global Asymptotical Stability — GAS (KIFHIELAZE )

An equilibrium x = 0 of a system & = f(x) is called globally asymptotically stable,
if x = 0 is asymptotically stable, and its domain of attraction is the whole set of
the state-space.

T # (UEERT AFRIEREFHIR)
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Concept of Lyapunov function

Candidate of Lyapunov function: V(x)
— A positive-definite function

V(x)
Definition of positive-definite
functions

e V(0)=0
o V(z)>0, xz+#0

= Bowl-shaped function
[Ex]

X
X2
V(z) = 23 + 2329 + 223

= (x) 4+ x9)* + 23

If V(z(t)) decreases monotonically, z(¢) tends to the origin. J

= If V() < 0 (x # 0), then the origin is LAS.

> 27 LR R

T # (EEERTF AFRIEREFHTR)

2021 fF HY—L 71/161




Lyapunov theorem Lyapunov theorem gives a sufficient condition

Common condition: ’V(a:) is positive definite‘

’ These Lyapunov theorems give ‘sufficient conditions. ‘

LS: If LAS: If More specifically, we have to find the Lyapunov function by some means to show
e V < 0 around the origin, e V<0 (z #0) the stability of a stable nonlinear system. All positive-definite functions are not
the origin is (locally) stable. around the origin, Lyapunov functions for a stable system.
treb(l)ngm is (locally) asymptotically However, there is a converse theorem in the sense of “existence theorem.”
stable.
Converse Lyapunov theorem
GS: .If GAS:_ If Consider the system & = f(x) where f(-) is locally Lipschitz. Suppose that the
e V<0, and e V<0 (z+#0), and origin of the system is globally asymptotically stable. Then, there exists a C*°
e V(x) is radially unbounded, e V(z) is radially unbounded, Lyapunov function satisfying the radially-unbounded condition.
then the origin is globally stable. then the origin is globally asymptotically ) ) ,
stable. There are various types of ‘converse Lyapunov theorems’. For example, see
/ Y. Lin, E.D. Sontag, Y.Wang: “A Smooth Converse Lyapunov Theorem for
. . = Robust Stability”, SIAM J. Control Optim., 34(1), 124-160, 1996.
Radial unboundedness (Definition) (HSHRICIER REM) Y P @)
V() oo (Jz] = oo) |
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Calculation of V/ Radial unboundedness (1)
We want to know the stability of the origin of sz the Lyapunov flu.nc—t\ion is not ‘radiarlly unbounded’, ..
& = f(z)

= What is the role of f(x) in the Lyapunov theory?

The vector field f(z) is used in the calculation of V().

V()= .85 _ VD poy o 1via)

@ Note that OV/0x is a row vector in the local coordinate expression:

P (20 20 eI
Oz 9z, Iz, o Locally asymptotically stable
o L, is the Lie derivative. @ The origin is not globally asymptotically stable. = The solutions outside of

the separatrix, which is indicated light blue dotted curve, diverge.
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Radial unboundedness (2)

Consider a locally Lipschitz autonomous system & = f(x). Suppose that V(z) is
positive definite_, radially unbounded, differentiable, and its partial derivatives are
continuous. If V() is negative definite, then
@ Any sub-level set S, = {z | V(z) < a} (a > 0) is compact, i.e., itis a
bounded closed set. )
o From the compactness and the continuity of LV (x), V() is upper bounded
on any level surface 9S, = {z | V(x) = a}, i.e.,
V(z) <pla) <0, "zedS,, a>0.

Therefore, _
V<plV)<o0

holds, and it is guaranteed that V converges to zero.

Without the radial unboundedness, the compactness is satisfied for only small a.

2 27 LGRS
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Weak Lyapunov function

e Strong Lyapunov function: Positive definite, and V < 0 (z #0)
— Vis negative definite.
e Weak Lyapunov function: Positive definite, and V < 0
— Vis negative semi-definte.

A weak Lyapunov function guarantees only that the state converges to the set
{z | V(z) = 0}. (Barbalat's Lemma) J

There exists a strong Lyapunov function around the origin that is asymptotically
stable. (Converse Lyapunov theorem)
However, finding an explit form of a strong Lyapunov function is often difficult.

4

Is it possible to ensure the asymptotical stability via a weak Lyapunov function
with some conditions?

T # (EEERTF KAFRIEREFHENR)
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Barbalat's Lemma

e For a function f(t), f(t) = 0 (¢ = 00) does not imply that f(¢) has a limit
at t — oco. [Ex.] f(t) = sin(In(t? + 1)).
o Existence of a limit of a function f(¢) at t — oo does not imply that
f(t) =0 (t — 00). [Ex.] f(t) =sin(t?)/vV12 + 1.
A weak Lyapunov function V' (z) has a lower bound (V' (x) > 0) and is a
decreasing function (V' < 0), and hence there exists a limit V (z(400)). However
it implies neither V(z(+00)) = 0 nor V(x(400)) = 0.

Barbalat's Lemma

If f(t) has a finite limit as ¢ — oo and if f is uniformly continuous (or f is
bounded), then f(¢) — 0 (t = o).

Application of Barbalat’'s Lemma to weak Lyapunov function

Suppose that there exists a weak Lyapunov function V' (z). Assume that 9V /0x
and f(z) are locally Lipschitz, then V(z(t)) = LV (z(t)) is uniformly continuous,
because the trajectory remains in a compact set {x | V(z) < V(x(0))}. Then,
from Barbalat's lemma, we can conclude that V' — 0 (t — o).

V.

T # (UEERT AFRIEREFHIR)
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LaSalle's invariance principle

We consider a solution of & = f(x), where f(x) is locally Lipschitz.

If for any initial state (0) included by a set Q, x(t) € Q (¢ > 0), then Q is called
a positively invariant set.

LaSalle’s invariance principle (LaSalle D RZ[RIE)

Let © be a positively invariant set. Suppose that any solution starting from 2
converges to a set E(C Q). Then, any solution starting from Q converges to M
that is the maximal positively invariant set included in E.

In our case, ) is often regarded as a compact set {z | V(x) < a} (a > V(z(0))).

Asymptotical stability with weak Lyapunov function

Let V(z) be a radially unbounded weak Lyapunov function. Suppose that f(x)
and the partial derivatives of V() are locally Lipschitz. If the maximal positively
invariant set included in E = {z | V(z) =0, V(z) < a} is M = {0} for any

a = V(x(0)) > 0, then the origin 2 = 0 is globally asymptotically stable.

> 2T LIRS R
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LaSalle's invariance principle (cont.)

Proof:  Set Q = {z | V(z) < a} (a > 0), which is a compact positively-invariant
set. From Barbalat's lemma, for any solution starting from Q, V/(z(t)) — 0 as

t — oo. Therefore, any trajectory starting from a point in {2 converges to
E={z|V(z) =0, V(z) < a}. From LaSalle’s invariant principle, we can show
that the state goes to M = {0} as t — co. The above discussion holds for any
positive a (= V(x(0))), and global Lyapunov stability of the origin is obvious.
Consequently, the system is globally asymptotically stable.

T # (UEERT AFRIEREFHIR)
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Invariance principle — Example

Example

. 0 1
T = Az = {_1 _1]93

0 1

Vig)=z"Pz=x" {1 O] T =a?+ 23

Time derivative of the Lyapuov function is
V(z) =z (PA+ ATP)z = —213

i.e., the state tends to a set F = {z | 2, =0} as t — oo.

We will apply the invariance principle. If x stays in E, £, = 0 should be
satisfied. Only the origin satisfies z € E and 2y = —z; — x5 = 0. Therefore,
the maximal positively invariant set included in E'is {0}, and the origin is globally
asymptotically stable.

T # (EEERT AFBRIEREFHR)
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Conclusion of Lyapunov theorem

o Monotone-decrease property of a positive-definite Lyapunov function V()
guarantees the stability.

o Negative definite V(m) assures the asymptotical stability, while
negative-semidefinite V (z) shows only stability.

@ Radial unboundedness condition is necessary for global property.

@ The invariance principle with a weak Lyapunov function helps us to show the
asymptotical stability.

T # (UEERT AFRIEREFHIR)
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Concept of dissipativity

Storage function (X b L —2B%; BREK): V(x)

o Virtual energy function
@ Generally positive semidefinite. However, in this lecture we mainly consider
the positive-definite case.

Supply rate (#583): s(u,y)
@ Energy supplied from the environment par a unit time.
@ A function of the input u and output y.

Rough concept of dissipativity (B4 )

‘ (Increase rate of storage function) < (supply rate) ‘

(RHS)—(LHS) indicates the dissipation of the virtual energy (> 0).

W # (EEERT KAFIRIEREFHER)
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Definition of dissipativity

Definition of Dissipativity

A system is dissipative, if there exists a storage function V() satisfying the

dissipative inequality (BU&FZER)

Via(ty)) = Viz(to)) < / " s(u(t), y(0)dt

0

e V(x) : Storage function
@ s(-) : Supply rate

If Vis differentiable, the dissipative inequality is equivalent to
V < s(u,y)

— (Differential dissipative inequality)

T # (UEERT AFRIEREFHIR)
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A condition of dissipativity

Assumption

All points are reachable from the origin by choosing input u.

If the required supply

Vr(z(ty)) = ﬂf (/ ' s(u, y) d¢> , x(ty) =0

is positive semidefinite, the system is dissipative for the supply rate s(u,y) with
the storage function V,.(x).

As a matter of fact, a locally bounded available storage

—/ttl s(u,y)dt)

0

Va(x(ty)) = sup (
u,tq
also becomes a storage function. It is clear that V,(z) is positive-semidefinite

(Consider the case t; = t,). Moreover, all possible storage functions V' (x) satisfy
Vo(z) <V(z) < V.(2).

T # (EEERTF KAFBRIEREFHNR)
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A condition of dissipativity (Cont.)

Theorem

Suppose the reachable condition. Then, the dissipativity is equivalent to

/ 1 s(u,y)dt >0, x(ty) =0, "u(-)

0

Proof of necessity: It is obvious by the substitution of z(t,) = 0 to the definition
of dissipativity.

Proof of sufficiency: If the condition is satisfied, the required supply V, is positive
semidefinite. Hence, the system is dissipative for s(u,y) with V.

Note that the above condition needs no information on the storage function V().
This condition show the existence of V(z). J

T # (UEERT AFRIEREFHIR)
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Various dissipativities

e Dissipativity for s(u,y) = v?|u)? — |y|*:
= Necessary and sufficient condition that the system has an L,-gain from u
to y that is lower than or equal to ~.
e Dissipativity for s(u,y) = u'y:
= Passivity
o Dissipativity for s(u,y) = u'y — afu|? — b|y|?:
= Generalization of passivity (circle criterion)

The passivity will be discussed in the next section. )

T # (EEERT AFREREFHER)
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Definition of passivity

Definition of Passivity (&%)
Dissipativity for the supply rate u'y. J

i.e., there exists a positive-semidefinite storage function such that

V(a(ty) — V(x(ty) < / CuTydt.

0

@ The numbers of input and output are same.
e If V(x) is differentiable, it is equivalent to the differential passivity

VguTy

> 27 LEIERER 2021 & BA—L 88 /161
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Examples of passive systems

@ 2-terminal LCR circuit network, where the voltage is an input and the current
is an output. We can regard the supplied power rate and the energy stored in
the circuit as a supply rate and a storage function, respectively.

@ A mechanical system with a positive-semidefinite Hamiltonian is a passive
system, where the Hamiltonian, external forces, generalized velocities, and
the work rate by the external forces are considered as a storage function,
inputs, outputs, and a supply rate, respectively.

@ A generalized Hamiltonian system

i=(J—R) [%}T + glx)u
y=g(x)’ [g—fr

with a positive-semidefinite Hamiltonian H (x) is also passive, where J(z) is
a skew symmetric matrix and R(z) is positive definite.

.
a_H] R [8_1{] yTu<uTy
Ox

H:_[ ox
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Connections of two passive systems

A feedback connection of two passive
systems is also passive.

A Parallel connection of two passive
systems is also passive.

i U+ U N y
—O— System 1 >

System 1

+ Y2 s 5 U
System 2 Y, ystem

Either subsystem has no direct
feedthrough.

> 27 LHIERR 2021 F HL—L 90 /161
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|/O transformation and passivity

. Augmented System o

u u y
M(x) System 1

v
v

M(x)"

v
A,

An 1/O transformation illustrated above preserves the passivity.

Valty) = Vialt) < [ uTydt = [ uT MG Ty

0 0

ty
= / uw' Ty dt
t

0

> 2T LEIEIERR 2021 fF HY—L 91/161
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IFP and OFP

OFP (Output Feedback Passivity) | IFP (Input Feedback Passivity)

A system is called OFP(p), if it is
dissipative for

A system is called IFP(v), if it is
dissipative for

s(u,y) =u'y—py'y s(u,y) =u'y —vu'u
............ Passive System ........ ... Passive System ...
pl vl
B OFP(p) x - IFP(v) |—>0——

T # (UEERT AFRIEREFHIR)
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Properties of IFP/OFP systems

Assume that « is a positive constant.
o If a system X is OFP(p), aX is OFP(p/a).
o If a system X is IFP(v), aX is IFP(av).
@ In the feedback connection, OFP(—p) can be cancelled by IFP(p),

———| OFP(—p) [—®—
+ . ol FPY
+ — p] H
IFP(p) [

i.e., this inter-connected system is passive.
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Stability of passive system (1)

Stability theory with a positive-semidefinite Lyapunov function
Suppose that there exists a Lyapunov function V' (z) such that
V(0)=0, V(z)>0, V<O0.

Then, E = {z | V(x) = 0} is a positively invariant set which includes the origin.
If the origin is stable for the restricted dynamics on FE, the origin for the original
system is also stable.
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Stability of passive system (2)

Stability properties of passive system

Consider a passive differentiable system @ = f(z,u), y = h(x,u) with a storage
function V' (z).

@ If the storage function V(z) is positive definite, the system with u = 0 is
stable. In addition, if V(z) is radially unbounded and positive definite, the
system with u = 0 is globally stable.

@ If the system with u = 0 is zero-state detectable, the zero-input system is
stable.

© Suppose that the system has no direct feedthrough, i.e., the output function
can be expressed as y = h(x). Then, a feedback u = —ky (k > 0)
asymptotically stabilizes the system, if and only if the closed-loop system is
zero-state detectable.
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Zero-state detectability

Consider a system,
T = f(ma u)a

Zero-State Detectability (ZSD; ¥ CREEA i HE):
The system is called zero-state detectable, if y = 0 yields

y = h(z,u).

z(t) =0 (t — o0)

Zero-State Observability (ZSO; ¥ OREERTEAIM):
The system is called zero-state observable, if y = 0 yields

For linear systems, ZSO coincides with the usual observability, and ZSD is equal
to the usual detectability.
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Proofs

@ For u = 0, the supply rate becomes zero. By regarding V(x) as a Lyapunov
function, V(z) < 0.
@ Since V(z) > 0, for the point with V(x) =0,

0< V(z) <u'h(z,u), for u

holds. From the differentiability of h(z,w), it can be decomposed as h(x, u)
= h(x,0) + n(z,u)u. Therefore, when V(z) =0, u" h(x,0) +u'n(z,u)u >
0 for all u, which derives that h(z,0) = 0. Hence, for a system & = f(z,0), a
maximal positively invariant set contained in {x | V/(z) = 0} is also included
in {z | h(z,0) = 0}. From the zero-state detectability, the state converges to
the origin on the set {z | V(z) = 0} Consequently, from the theorem, which
is shown in previous slide, the origin is stable.

@ As the proof of 2, y = h(x) = 0 holds, when V(z) = 0. Because V <
—kh(x)"h(z), the state converges to the set {z | h(x) = 0}. On the set, the
input is zero. From ZSD of the system with zero input, the state tends to the
origin as t — 0o0. The necessity can be also shown in a similar way.
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Feedback connection of IFP and OFP systems

- B y System 1 is dissipative for the supply
System 1 rate
Ul Yy — Pryl Y1 — ViUl Uy
W ¥
System 2 with a storage function V; (z1).

System 2 is dissipative for the supply

S that Syst 1 and 2 with
uppose that Systems 1 and 2 wi rate

uy =0, uy =0 are ZSD.
Consider the case of u = 0. WYy — poydys — vauduy
with a storage function V5(z,).

Q If v; + py >0 and v, + p; > 0, then the closed-loop is stable.
@ If vy; + py, >0 and v, + p; > 0, then the closed-loop is asymptotically stable.

If V, and V, are positive definite and radially unbounded, The properties of 1. and
2. are “global.”

Hint of Proof: Consider a Lyapunov function V; + V.
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The case of static feedback

Assumptions: B System 1 with u; = 0 is ZSD.
M V;, is positive-definite and radially unbounded. J

We regard a simple static feedback law y, = Ku, as System 2, where K is a
positive-definite matrix. J

Let A\;, denote the minimal eigenvalue of K, and A ,, the maximal eigenvalue
of K. The storage function of System 2 is zero, because it has no state variables.
For py > 0, vy with A i, — paA2. — Vs > 0, the following inequality holds:

T T T 2 T
Uy Yo — PaYa Yo — Vallg Us > (Apin — Padiax — Vo) Uy Uy > 0.

For Zpy > 0, Fvy with A, — po2. — Vs >0, if v, + py > 0 and vy + p; > 0,
then the closed-loop system is GAS. J

Especially,

When System 1 (v; = 0) is OFP(p;), the closed-loop system is GAS for K with
large eigenvalues. Moreover, for passive System 1 (p; =0, v; = 0), any
positive-definite & makes the closed-loop system GAS.
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Theorem of Hill & Moylan

Input-affine system:

Theorem of Hill & Moylan, 1976

This system is dissipative for a supply rate

s(u,y) =u'y —py'y—vu'u

with a differential storage function V' (z), if and only if there exist a functions ¢ :
R™ — R with a suitable k and W : R® — RF*™ satisfying

LV = —24(2)"a(a) — ph(z)T h(z)
L,V(2) = h(z)T = 2ph(2) j(z) — 4" (2) W (2)
W (@)W () = —201 + j(2) + §(2)T — 20j(2) ()

V.
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Corollaries of theorem of Hill & Moylan (1)

Theorem of Hill & Moylan derives the followings:

Relative degree of IFP system

If a system is IFP(v) for a positive v, j(x) is a regular matrix, i.e. the system has
a vector relative degree zero.

Proof: Since p =0, j(z) + j(z)" =2vI + W (z) "W (z) is regular.
Storage function of passive system (IMPORTANT)

If a system satisfying j(x) = 0 is passive with a storage function V' (z), then

L,V <0
L,V(z)=h(z)"

holds, i.e the system is Lyapunov stable and the output function is explicitly
restricted by the above equation.

Proof: Since p =v =0, W(x) = 0 holds. From the theorem of Hill & Moylan,
the proof is obvious.
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Corollaries of theorem of Hill & Moylan (2)

Relative degree of passive system

If a system with j(x) = 0 is passive with a storage function V(x), and if the
output functions are independent, the system has a vector relative degree one
around the origin, i.e., (L h)(0) is regular.

Proof: Since 9V /0x(0) = 0, we obtain

So= (o5 o

We can express 02V /0z%(0) as RT R, because it is positive semidefinite. The
independence of the output function means that 9h/dx has a full rank, and
therefore rank Rg(0) = m holds. Consequently, we can conclude that

rank (L,h)(0) = rank {g(0)" R" Rg(0)} = m

> 2T LR
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Linear passive system (1)

We will apply the theorem of Hill & Moylan to linear systems.

Linear passive system with a positive-definite storage function

Suppose that a linear system & = Az + Bu, y = Cx + Du is passive with a
positive-definite quadratic storage function V(z) = 2" Pz/2 (P > 0). Then, there
exists matrices L and W satisfying

AL AP =0

PB=CT—-L'W

WTW =D+ D'
Espacially, for the case with D = 0,

PA+ATP<0
PB=C"

holds.
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Linear passive system (2)

Positive Real (IE3E1%)

A linear square system H(s) = C(sI — A)"'!B + D (minimum realization is
assumed) is called positive real when the followings are satisfied:

Q@ Re(N\;(4) <0,i=1,...,n

Q@ H(jw)+H(—jw)" >0, Yw ¢ \;(A)

@ All eigenvalues s; of A on the imaginary axis are simple, and their Residue

matrices lim (s — s;)H(s) are Hermite and positive semidefinite.
58,

Positive Real Lemma

A passive linear system with a positive-definite storage function is positive real.
Conversely, a minimum realization of a positive real system H(s) is passive with a
positive-definite storage function.

.
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Linear passive system (3)
Strictly Positive Real (8IE3E14)

A linear square system H(s) = C(sI — A)"'!B + D (minimum realization is
assumed) is called strictly positive real when the followings are satisfied:
Q@ Re(N(4) <0, i=1,...,n
Q@ H(jw)+ H(—jw)" >0, VweR
Q H(co)+ H(co)" >0 or lim w?™ 9 det[H (jw) + H(—jw)"] > 0, where
w—00
q = rank[H (c0) + H (00)].

Kalman-Yakubovich-Popov Lemma (KYP Lemma)

A system is strictly positive real, if and only if there exist P > 0, L, W, and ¢ > 0
such that

PA+A'™P=—-L"TL—¢P
PB=C"—-L'W
W'W =D+ D'

Especially, when D = 0, simplified relations PA + ATP <0 and PB = CT hold.

= = = Ty
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Linear passive system (4)

Suppose that for some positive constants €;, €, a linear system is dissipative for
u'y—eulu—ey'y
and ZSD with zero input. Then, the system is strictly positive real.

Proof: From the Hill-Moylan's theorem and the ZSD property, the linear system
with zero input is asymptotically stable. The system is obviously IFP(e;), so
G(s) = C(sI — A)" B+ D can be expressed by a parallel connection of €, and a
passive system G(s). Therefore,

G(jw) + G(jw) " = 26,1 + G (jw) + GL(Gjw)T >0

for w € R. Moreover, G(joo) + G(joo)' is also positive definite.

> 27 LR

T # (UEERT AFRIEREFHIR)

2021 FL—L 106 / 161

Sector nonlinearity

Various different definitions of sector nonlinearities (122 2 BYIEMFHIME) exist.
This lecture adopts the following definition.

A locally-Lipschitz static function y, = ¢(us) satisfying

2 2

_a+p B—

2

«
Yo Ug Ug

<

is called sector nonlinearity of («, f3).

When g = oo, by taking limit, it is defined as

T T
Ug Yo = Oy Usy

> 27 LIRS R

W # (EEEAT AFIRIEREFHTR)

2021 F HL—L 107 /161




Scalar 1/0 case

When the input and output are scalar, the sector nonlinearity is defined as

au% < UglYy < ﬁu%

Y
Y, = Bu, —

Y, =,

T # (UEERT AFRIEREFHIT)
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Absolute stability

When feedback connected systems with System 1 and all sector nonlinearities of

(o, 3) are GAS, System 1 is called absolutely stable (#X3%27E) for sector
nonlinearities of (o, 3).

T # (LEERTF AFBRIEREFHTNR) > 27 LIRS R 2021 F HL—L 109 /161

Sufficient condition of absolute stability
Suppose that System 1 has no direct feedthrough, and is ZSD with zero input.

A sufficient condition of absolute stability for sector nonlinearities of («a, 3) is that
the parallel connected system of System 1 and a static gain function (1/3)1 is
OFP(—k) with a radially unbounded positive-definite differential storage function
V(x), where k= aB/(B—a), a=a—¢, B =B+ e for 7e; >0, and e, > 0.

Let 5 = +o00, when 8 = +o0.

+ U + n
0—0O—@—| System I 0 Y
u _
Yo 2 A+ u,
P+
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Proof of the sufficient condition
Proof From the OFP property, we get
V< ?31T(“1 + kyy) = —ug(yy — ki)

By substituting u, = @iy + 5 /f3 into the definition of the sector nonlinearity, we
obtain i, (yy — kiiy) > 0 (y, # 0). Hence, V < 0 (, # 0) holds. Note that

y; = 0 means u; = 0 and y; = 0. Since System 1 with zero input is ZSD, the
feedback system is GAS.

+ U AR
0 System 1 7 Y
_ 1
Va U, + i,
P
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Another expression of the sufficient condition (1)

The sufficent condition is equivalent to the passivity of the following figure:
ap/(B-a)
/B

Moreover, since v’ = 3/(f — @) - (u; + ay,) and y' = u, /B + y,, it is also
equivalent to the passivity of the figure below.

(/B!

> 27 LIRS
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Another expression of the sufficient condition (2)

Since
Wy = (uy 4+ ay) (uy /B +yy)

a+pf . 1o af -+ }
= = U + —u U + ——
B { T SR T Ay g

by choosing €; = €,, we obtain the following lemma.

Suppose that (o + 3)/8 > 0. Then, the sufficient condition for the absolute
stability is equal to the dissipativity for the supply rate

1 af _
w’ —i——uTu—f—( —6) v
& a+f a+p a0

for some positive €.
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Stability margin of linear system (1)

Consider a Nyquist plot of an SISO strictly-proper linear system G (s).
For simplicity, we assume that no pole of G{j(s) is on the imaginary axis, and that
it has p poles on the right-half plane of the complex plane.

Gain Margin (71 >R18)

A system has a gain margin for («, 3), when the Nyquist plot turns around
—1/k+ j0 (VK € [a, 8]) p-times counterclockwise.

Im

T

m\
N

™
1

Q=

Sector Margin (£ ZR14)

A system has a sector margin for (a, 3), when it is absolute stable for the
nonlinear sector of (o, 3).

T —— = S Kol

2021 FL—L
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Stability margin of linear system (2)

Disc Margin (FI#&R#)
A system has a disk margin for D(a, 8), when its Nyquist plot turns around the

circle centered at 1(1+1>+'0 ith a ad"l(1 1) times
ir nter — =+ = wi radii = [ — — = | p-tim

2\a f 4 2\a f &
counterclockwise without contact. In this lecture, the contact is prohibited even
for G(joo). However, only when 8 = 400, we allow contacts between the Nyquist

plot and the disk at the origin.

o

Let D(«, 3) denote this disk.

Im
e N
. \
——
a “
0 1 e
@ LB /
----- i B
c
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Disk margin and positive realness

We assume 3 > 0.

Disk margin and positive realness
If Gy(s) has a disk margin for D(«, (), if and only if

5 Go(s) +(1/6)

Cl) = ~aGo() + 1 Y‘e

When System 1 is linear with G (s), the
condition of the absolute stability is

is positive real.

System 1 is absolutely stable, if the
following system is OFP(e) for some
positive €:

0/ | Lly] _ Gyls)+(1/5)
S IS o e Lw’] ~ "aGy(s) +1

ol is passive.
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Disk margin and positive realness (cont.)

@ Since we only consider the minimum realization, the observability is satisfied.
@ A positive-real linear system is always passive. ~
@ When § = 400, we choose § = o also, i.e.,, —1/8=—-1/8=0.

Consequently, we obtain the following result.

Disk criterion (circle criterion; FIE&5&{4)
If Gy(s) has a disk margin for D(«, ), it has a sector margin for («, (). J

Generally, the converse of the above is not established.

’(Gain margin) D (Sector margin) D (Disk margin) ‘
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Disk margin and IFP/OFP

For controllable and observable linear system, the following facts are established.

A
L/

OFP and disk margin

The followings are equivalent to each other.

Q A linear system is OFP(—a + €) with some positive e.

@ The system has a disk margin for D(a, 00).

@ The feedback connection of the system and all IFP(v)
(v > a) GAS linear system is GAS.

~1/al

IFP and disk margin =7

A system is IFP(—1/3 + €) for some positive ¢, if and only
if it has a disk margin for D(0, §).
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A Review of analytical mechanics

Generalized position: ¢ = (q;,...,q,)"
External forces: u = (uy,...,u,)"
Kinetic energy: T'(q,q)

Potential energy: W (q)

Lagrangian: L =T —W

Euler-Lagrange equation:

i 8_L —8—L—u 1=1 n
dt 8q1 aq_ (3] = dgooog

T

Vector expression:

d {8L}T_ {aLr_
dt | 0 dq

> 27 LIRS R
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Usual mechanical system

Kinetic energy of usual mechanical systems can be expressed by quadratic form

(ZRFR)

T(g,d) = 53" M()d

where M (z) is a positive-definite inertia matrix (1BM47%Y).

Euler-Lagrange equation of usual mechanical system

M(q)d + c(q,4) + g(q) = u
c(q,4) = ¢1(¢,9) + ¢2(q, 9)

¢1(q,9) = [a(Ma—(qu)] G (Coriolis forces),

a(qTM<q>q'>]T

1
co(q,4) = 3 { By (centrifugal forces)

ow7’ _
g9(q) = {6—(1} (gravity forces)
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Hamiltonian
oL’
Generalized momentums: p = [8_q]

Inverse transform: ¢ = ¢(p, q)
Hamiltonian

_ 'T _ .
H(p,q) = [d"p =L@ dll,_,

For quadratic kinetic energy T'= ¢' M(q)q/2 cases, ...

Generalized momentums: p = M(q)q
1
Hamiltonian: H = ipTM(q)_lp—i- Wi(q)

Hamiltonian expressed by ¢ and ¢:

1. .
HziqTM(q)quW(Q) =T+W

T # (EEERTF AFRIEREFHIR)
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Legendre transform

Infinitesimal displacement of L: dL = [a—L} dq + [G—L] dq
9q dq

Infinitesimal displacement of H T T

expressed by p, ¢, and L: dif =q¢ dp+p dj—dlL

By substituting dL, from the definition of p, the term p'dg is canceled, and we

obtain oL
dH = ¢"dp — [—] dq
dq
Finally, we get
0H T
=

BH] _B [8L

///’_ﬂ%' Eﬂ'\\\\

Partial derivative when H is a Partial derivative when L is a
function of p, ¢ function of ¢, ¢

Such a change of coordinate is called Legendre transformation.
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Canonical equation

From Euler-Lagrange equation, we get
=|—=— U
Finally, we obtain

Hamilton's canonical equation (Hamiltonian system)

Equation of motion expressed by p and ¢:

. roH1"

i= (3]

. rom”
p——[a—q] o

W # (EEEAT AFBRIEREFHER)
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Passivity of Hamiltonian system

Port-controlled Hamiltonian system
Hamiltonian system with |/O

. [GH}T
- [BH]T u
p= g
oH1" .
v=[5)] =0
V.
H=uTy
Port-controlled Hamiltonian systems is passive with storage function H. J

T # (UEERT AFRIEREFHIR)
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Simple linear-feedback cases

We will consider control of port-Controlled Hamiltonian systems.

Assumptions

@ The kinetic energy can be expressed by a quadratic form
T =q"M(q)§/2=p"M(q)"'p/2 (M(q) > M, > 0).

@ There exists a minimum value of the potential energy W (q). Without loss of
generarity, we set the minimum value zero.

Under a simple feedback u = —ky = —kq, H = —ky y = —k{" ¢, i.e., p — 0

(t = o0), which means that the closed-loop system is stabilized. Furthermore, if
W is positive-definite and radially-unbounded with respect to ¢, and if 9W /9q # 0
(z # 0), then from the invariance principle the closed-loop system is GAS.

Feedback u = —kq (D-control):
An equilibrium such that W (q) = 0 is asymptotically stabilized. J

[Next slide]: We can change the potential W to a desired function.

W # (EEERTF AFBRRIEREFHER)
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Modification of the potential function

Desired potential function: TW(q) (Positive-definite and radially-unbounded
with respect to g, and OW/dq # 0 (z # 0))
New Hamiltonian: H(p,q) = H(p,q) — W(q) + W(q)

=T(p,q) + W(q)

. o)’ B Wfl{awr_ o’
opl —|op| "’ dqgl | 9q Oq 0q
By substituting these to the canonical equation, we get

Ak

q= | op

__[on T_[aw]l L

b= dq dq dq

y= BZ]T (=4q)

T # (UEERT AFRIEREFHIR)
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Canonical transformation

We will determine the feedback such that the closed-loop system becomes another
canonical equation with the new Hamiltonian.

, o]’
Input transformation (feedback): u = g(q) — e +u
Obtained port-controlled Hamiltonian system:
. [om)
T —[""_FT(—Q-)
: [MT _ op
P=—|5-| tu
9q

@ A canonical transformation, which consists of the modification of Hamiltonian
and feedback, derives another port-controlled Hamiltonian system.

@ The transformed system is also passive, and asymptotically stabilizable by
u = —ky, where the state converges to the minimizer of the new potential,
which can be designed freely.o

W # (CEERT AFIRIEREFHER)
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Quadratic case (1)

We consider the case where the new potential has a quadratic form.

W= %(q —q0) " (¢—qp)

where k; > 0 and g is the reference point of g.
Input transformation:

u=g(q) —ki(qg—qy) +u

Wi(q) =0 (i.e., g = qp) is GAS.

T # (UEERT AFRIEREFHIR)
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Under a further feedback u = —k,y = —kyg (ky > 0), the equilibrium such that J

Quadratic case (2)

Finally obtained controller for the quadratic cases J

u=g(q) —kag—k(q—q)

@ ¢g(q): Cancelation of gravity.
e —kyqg: Virtual viscosity friction: D(differential)-control.
® —ky(q— qy): Virtual spring force: P(proportional)-control.

PD control with the cancelation of gravity makes the closed-loop system GAS. J

Despite the nonlinearity,
combination of "cancelation of gravity" and "linear feedback"”
globally asymptotically stabilizes the system.

= Control utilizing the intrinsic property of the controlled object
(dynamic-based control)

T # (EEERTF KAFBRIEREFHTR)
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Example (1)

A weight with mass m is sliding on

a beam without frictions.

@ The weight is supported by two
springs, whose synthetic spring
constant is K.

@ The beam rotates centered at a
point O. The length OP in the
figure is L.

@ The center of gravity of the beam
without the moving weight
coincides with O, and its moment
of inertia is J.

@ Let G denote the acceleration of gravity.

@ The rotation axis is driven by a torque input 7.

@ The controllability condition of the linearly approximated system holds, i.e.,
LK +mG.
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Example (2)

@ Let z denote the position of the moving weight from the point P, and 6 be
the angle of the beam.

o Let ¢ =(q1,95)" = (0,2)" be the generalized-position vector,
G = (dy,dy)" = (6, 2) the generalized-velocity vector, p the
generalized-momentum vector.

o We regard u = 7 as the input. The state vector is
z=(q",¢")" = (0,207, org=(q¢",p")".

Kinetic energy:

T 592 + T2+ L) + 2065 + )
1 .1 [J+m(L?+2%) mL] .
=54 M(9)q =54 mlL m |4

Potential energy:

W # (EEERT KAFIRIEREFHER)
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Example (3)

Lagrangian: L =T —-W
Euler-Lagrange equation:

M(g)j + clq,q) = (5)

2mz0% + mG(zcosf + Lsinf)
—mz6? + Kz + mG sin 0

o) =
Generalized momenta: p = M (q)g
1
Hamiltonian: H = ipTM(q)’lp + Wi(q)
Canonical equation:

. O0H .
Q—afp(—Q)
.__6i[+ T
p= Jdq 0

> 27 LIRS
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Example (4)

Actually, the Hamiltonian is not positive-definite.
— k
Modified Hamiltonian: H = H + ~1¢}

2
H(Z) is positive definite, if k; > m?G?/K. J
Input transformation: v = —k,q; +v
Transformed canonical equation:
. OH, K .
q= a*p(— q)
. _ai? L (v
P= Jdq 0
y= ot _ q
p, '

This system is passive.
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Example (5)
We will check the ZSD of this system. Suppose y = 0 and u = 0. Then,
q; =6 =0, (const.), =0, and § =0 hold, and the motion equations become

mLZ 4+ mG(zcos 0y + Lsinby) + k6, =0
mzZ+ Kz+mGsinf, =0
By eliminating Z from these equations, we get
k16, = 2(LK — mG cos f)

If LK —mG cosf, # 0, z is a constant zo(= k16,/(LK — mG cosf,)). By
substituting z = z;, 2 = 0, and Z = 0, and eliminating z,, we obtain

Kk,0y+ mG(KL—mG cosb,)sinb,
m2G2
= Kk0y + mGKLsin6, —

sin 20, =0

For k;, > max{m?G?/K,mG(KL + mG)/4}, the sign of LHS corresponds to the
sign of 6, and therefore 0 = 6, = 0. Moreover, from the relation between 6, and
29, #2 = 2o = 0 should hold.
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Example (6)

If LK —mGcosf, =0, then 6, = 0 must be satisfied. This case appears only
when LK = mG@. (resonance condition)

However, it contradicts the assumption of the controllability of the linearly
approximated system. Hence, we can show that LK — mG cos§, # 0.

Consequently, we can conclude the zero-state detectability of the system for
k; > max{m?G?/K,mG(KL + mG)/4}. Then, the feedback v = —k,y globally
asymptotically stabilizes the origin.

Globally-asymptotically-stabilizing control-law

u=—kyq —kyqy
where k; > max{m?G?/K,mG(KL + mG)/4} and ky > 0.
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Passive output including positions (1)

Usual passivity-based control has an output that coincides with generalized
velocity vector.

It may hinder the further utilization of the passive property, for example extention
to passivity-based remote control.

It is useful to make the output include position information. J

e New generalized momentums: p = p + AM(q)(¢ — q,) (A > 0)

~ 1
e New Hamiltonian: H(p) = §~TM(C])_11~9

T # (UEERT AFRIEREFHIR)
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Passive output including positions (2)

Converted system

OH1'

s [ & _ _)\ - M 1~

i=|5] =Ma—aw)+ M@

< oH|' o

p=-— {871] + MM(q,p) +p} +u+ Foyg
@ Blue term: Additional dumping.

of| '

@ By making the red terms equal to J(p, q) | a new passivity-based

control law can be derived, where J(D, q) is a skew symmetric matrix.

@ The closed-loop system is a cascaded connection of a generalized
Hamiltonian system and a GAS system. Usually, it is assumed that | (q)
is bounded to avoid finite-time divergence.

-

a9 T
- OH .
@ The new output is § = T =G+ MNg—qp)-
—> Useful for position synchronization in bilateral manipulator system.
WTF # (ALBEAF KFRIEREFHER)
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Necessary condition of Lyapunov function of the closed-loop
system (1)

Assumption
For a system
&= f(z)+g(x)u

a stabilizing static state feedback u = «(x) is designed with a radially unbounded
Lyapunov function V' (z), such that the closed loop system

{t:

S

(z) = f(x) + g(x)a(z)
is GAS with V(x).

What is the condition that V' (z) should satisfy?
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Necessary condition of Lyapunov function of the closed-loop
system (2)

Since oy
V=5 ] @)+ g@ala)}
=LV(z)+ (L,V(z))a(z) <0, (z+0),

at a glance, it seems that by choosing « large with the opposite sign of LV, we
can always make V negative.

However, At a point such that L,V (z) = 0, the input u = a(z) is not directly

effective on V.
= At such points, LV < 0 (x # 0) is necessary.

Necessary condition of Lyapunov function
At a point such that L V(z) = 0 and = # 0, the inequality LV (z) < 0 holds. J

This condition is independent from the choice of the control law a(x).
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Control Lyapunov function

Control Lyapunov function; clf

A function V(z) is called a control Lyapnov function of a system

z = f(x) + g(x)u, when
e V(x) is smooth radially-unbounded positive-definite function, and
o L;V(z) <0 holds at a point such that L,V (z) = 0 and z # 0.

This is a necessary condition for the Lyapunov function of the closed-loop
system.

In the following slides,...

We will show that the existence of a clf yields the global asymptotical
stabilizability by a state feedback u = a (x), where we allow the local
unboundedness around the origin.

T # (UEERT AFRIEREFHIR)
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Sontag-type control law

If a clf V(z) exists,
Sontag-type control law
u=ay(r)=
LV + \/(LfV)2 + (L V(L,V)T)?
B L,V(L,V)T
0, L,V =0

(L,V)T, L,V #0

globally asymptotically stabilizes the system.

For the purpose of the asymptotical stabilization, only finding a clf achieves the
objective, instead of the direct design of control laws.
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Global asymptotical stabilization by Sontag-type controller

We will confirm that the Sontag-type controller globally asymptotically stabilizes
the system.

We will calculate the time-derivative of the clf under the Sontag-type controller.
e When L,V #0,

V= LV + L, Vag(z)
=LV —{LV + /(L2 + (LV(LV)T2}

- —\/(LfV)2 +(LV(L,V)T)2<0
® When L,V =0 and z # 0,

V=LV <0

Hence, Vis negative definite. = Consequently, the closed-loop system is GAS.

T # (UEERT AFRIEREFHIR)
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Continuity of Sontag-type controller

Is the Sontag-type controller «,(x) locally bounded around the hyper-surface
L,V =07
g

Lemma: A function

0, ifb=0and a <0
P(a,b) = a++vVa?+ b2
-5 elsewhere a

is real analytic on S = {(a,b) € R? | b > 0 or a < 0}.

Proof: Consider F(a,b,p) = bp? — 2ap — b = 0, which is a quadratic equation
with respect to p. lts solution on S'is p = ¢(a,b), even when b =0 and a < 0.
Because

OF
5y (@:0,0(0.0)) =2V/@ T2 4.0, (a,b) € 5
we can conclude that ¢(a, b) is real analytic, by the implicit function theorem.
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Continuity of Sontag-type controller (cont.)

Real analyticity except around the origin

For a clf V(x), the Sontag-type controller a., () is real analytic except around the
origin.

Brief proof: By substituting a = L,V and b = LQV(LQV)T into the lemma on the
previous slide, we get

(0)=1" o
ST oLV L VLV LV, @£ 0

Obviously, a () is real analytic except around the origin.

T # (UEERT AFRIEREFHIR)
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Sontag-type controller around the origin

Is the Sontag-type control law continuous around the origin?
Is the Sontag-type control law locally bounded around the origin?

LV=0
o, (x) k

m)—m

o (x) — 777?

o(x) =0
It is not guaranteed that a (x) converges to zero when x approaches to the origin
from the area of L;V > 0. It depends on the ordres of L,V and LV with respect

to x around the origin.
= Sontag's controller «, may diverges around the origin.
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Small control property

Small Control Property; scp

(Definition): A clf V(x) has a small control property, if there exists a continuos
control law a(z), defined around the origin, such that «,.(0) = 0 and

LV(z)+L,V(z)a,(z) <0, "z#0

Continuity of Sontag-type controller for a clf with scp

If a clf V(z) has a scp, i.e., if there is a continuous asymptotically-stabilizing
control law around the origin with a Lyapunov function, Sontag-type controller is
also continuous.

The proof is on the next slide.
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Small control property (cont.)

Proof:  Since the control law is real analytic except around the origin, we will
show the continuity only in the neighborhood of the origin.
From

LV <LV - llael, LV =0

loll < llevell + 4/l + 1L VIZ - LV =0

On the other hand, it is obvious that

we obtain

lal < IL,V], LV <0
Because . and L,V are continuous, ag — 0 (# — 0). Therefore, a, is also

continuous.

If we can obtain a clf V' (z) with scp, the Sontag-type controller can globally
asymptotically stabilizes the system. J
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Stabilizability and clf

We can get a necessary and sufficient condition of the global asymptotical
stabilizability.

Theorem

A smooth system @ = f(z) + g(z)u (f(0) = 0) can be globally asymptotically
stabilized by a continuous state feedback, which vanishes at the origin, if and only
if there exists a clf with scp in a weak sense, where the clf must be infinity-times
differentiable, but does not have to be smooth.

The condition of cIf is weakened due to the limitation of the converse Lyapunov
theorem.

Finally, we get the following result.

For a system that is globally asymptotically stabilizable by a state feedback having
small value near the origin, there exists a C'*°-class clf V(x) with scp, and the
Sontag-type controller, which achieves the global asymptotical stabilization, is
continuous.

> 27 LR

T # (UEERT AFRIEREFHIR)

2021 F HL—L 148 /161

Notations for ISS (1)

R*: Class of non-negative real numbers.

Class-X

A strictly increasing continuous function v: RT™ — RT such that v(0) = 0 is called

to be a class-X" function. )

Class-X

A class-X function v: Rt — RT such that v(r) — oo (r — o0) is called to be a
class-X ., function.

y(r) y(r)

T r

Class-X  function Class-X function but not class-X", function

A class-X . function v has an inverse map v !: R — R*.

2021 F HL—L 149 /161
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Notations for ISS (2)

Class-X £

A continuous function 3: RT™ x Rt — R' satisfying the following conditions is
called a class-X £ function:

© for any fixed s, the function (-, s) belongs to class-X,
@ and for any fixed r, the function B(r,-) is a descresing function such that
B(r,s) = 0 (s = 00).
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Definition of ISS

Definition of input-to-state stability (ISS)
Cosider a nonlinear system
& = f(z,t) + g, (z, t)w,

where f(0,t) = 0. The system is called to be input-to-state stable (ISS), if for
any continuous w(t) (¢ > 0) and for any initial state z(0) the solution x(t) exists
and there exist a class- X" £ function (-, ) and a class-X function x(-) such that

le(®] < B(12(O)1 )+ x ( sup [w(n)]), ¥t >o0.

v

@ The function (-, -) in the above inequality represents an effect, which decays
over time, of the initial condition.

@ The existence of the function x(-) means that if the disturbance w(t) is
bounded, its effect is also bounded.

T # (EEERT KAFIRIEREFHER)
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ISS for linear systems

The solition of a linear time-invariant (LTI) system & = Az + bw is

x(t) = exp(tA)z(0) + /t exp((t — 1) A)u(r) dr.
0
Therefore, the ISS condition of the LTI systems becomes
Jz(t)] < exp { (maxRe[x,(4)]) ¢}
+ /0 " Jexp(rA) B dr - ( sup ||w(7')||> .

0<r<t

Hence, if Re[);(A)] < 0, the system is ISS. Furthermore, the converse is also true.

LTI system & = Ax + bw is ISS, if and only if all eigenvalues of A have negative
real parts. J

This ISS condition coincides with that of the usual stability of LTI systems.

T # (UEERT AFRIEREFHIR)
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A necessary and sufficent condition of ISS

Necessary and sufficent condition of ISS (Sontag & Wang 1995)

Nonlinear system & = f(z,t) + g,,(x,t)w with f(0,¢) = 0 is ISS if and only if
there exists a function V(z,¢): R™ x R" — R, class-X, functions v, (:), 75(+),
and p(-), and a class-X function ~4(-) such that

n(lzl) < V(z, 1) <y (lzl),
V= (LyV)(@,t) + (Ly, V(@ thw < —5(llz])  for |lz] < p(Jlwl)-

/vl

K Y1 toyaop(fwl])

14 D)

V<0
pflwl)

]
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Another necessary and sufficent condition of 1SS

We will only consider the time-invariant systems. Then, the condition
v (|z]) < V(x) < ~5(|x|) means that V() is a radially unbounded positive
definite function.

Necessary and sufficent condition of ISS (Sontag & Wang 1996)

A nonlinear system & = f(x) + g,,(z)w with f(0) =0 is ISS, if and only if there
exists a radially unbounded positive definite function V' (z) such that

V < —a(|z]) + b(Jw]),

where a(-) and b(-) are some class-X_ functions.

V.

For any fixed |w||, V < 0 holds in the domain |z > a~' o b(|lw]) + €(|lw]), where
e(JJw|) is a small positive real number.

T # (UEERT AFRIEREFHIR)
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Integral ISS and integral—integral criterion

o Max—Max criterion (ISS)

lz(@®) < B0, ) + x(Jw(-)l2,00)

o Integral-Max criterion (Integral ISS; ilSS)

The Integral-Integral criterion is equivalent to the Max—Max criterion (ISS). }

Any ISS systems are iISS. The converse is not true. )
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Input-to-state stabilization

Consider the following nonlinear system with input « and disturbance w:

&= f(x) + g, (@)w+glx)u  (f(0)=0).

Objective of input-to-state stabilization

Find a feedback law u = «(z) such that the closed-loop system

i = f(z) + g, (@)w = {f(2) + g(x)a(2)} + g, (z)w
is ISS.
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> 27 LEIERER 2021 & BE—L 156 /161

ISS clf

Definition of ISS control Lyapunov function (ISS-clf)
A smooth radially unbounded positive-definite function V() is called an ISS-clf,
if there exists a class-X  function p(-) such that

inf {L;V(z)+ L,V (z)u+ L, V(z)w} <0

ueR™

for any (x,w) satisfying ||z > p(||w|]) and x # 0.

= There exists an input fulfilling the ISS condition.
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Necessary and sufficient condition for ISS clf

Necessary and sufficient condition for ISS clf

A smooth radially unbounded positive-definite function V (x) becomes an ISS-clf,
if and only if there exists a class-X ", function p(-) such that

LV (@) + Ly, V(@)™ (Jz]) <0

for = satisfyng L,V (z) =0 and z # 0

Proof: [Necessity] Assume that L,V (z) = 0. The original inequality must be

satisfied for w = {p’l(||x||)/||ngV||}(ngV)T, and it derives the condition.
[Sufficiency] Suppose that the above condition is satisfied. For (z,w) such that
lzl = p(Jw|) and 2 # 0, the following inequality holds:

inf{L;V+L,V-u+L, V-w} <inf{L;V+L,V-u+|L, V|- [|w|}

<WE{LY + L,V - ut |L, Vo (]} = {j e o

Hence, the original inequality is satisfied.
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Yet another necessary and sufficient condition of ISS

The condition on the previous slide derives a yet another ecessary and sufficient
condition of ISS for no input cases. Suppose that g(z) = 0, and apply the
condition on the previous slide to this case.

Necessary and sufficient condition of 1SS

A nonlinear system & = f(x) + g,,(z)w with f(0) = 0 is ISS, if and only if there
exists a radially unbounded positive definite function V(x) and a class-X
function such that

LV (z) + |L,, V(@) (l2]) <0 (z #0).
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> 2T LEIEIERR 2021 F HL—L 159 /161




Necessary and sufficient condition for ISS stabilization (1)

Necessary and sufficient condition for ISS stabilization

An analytic system & = f(x) + g(x)u + g,,(x)w is ISS stabilizable, if and only if
there exists an ISS-clf with scp (small control property).

Proof: [Necessity] Obvious from the result of Sontag and Wang.
[Sufficiency] The following Sontag-type controller makes the system ISS.

Sontag-type controller for ISS stabilization

w+\/w2—|—{(LgV)(LgV)T}2 ;
- TV)LV)T (L,V)T (L,V #0)
’ (L,V =0),
w=LV+|L, Ve~ (lz]).

u=a(r)=

T # (UEERT AFRIEREFHIR)
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Necessary and sufficient condition for ISS stabilization (2)

We will obtain V under the Sontag-type controller.
o Cases for L,V # 0: For (z,w) such that [z > p(]w]),

V <Ly, VIl = o~ (l21)} ~ \/w2 +{(LV)(LV)T}2 <0
e Cases for L,V =0: For (z,w) such that ||z > p(|w]) and = # 0,

V<LV +|L, Vlp~'(Jz]) <0 <= Condition of ISS-clf

Hence, the closed-loop system is ISS.
Moreover, from the scp condition we can show that the control law is continuous,
as well as the cases of usual stabilization.
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