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Robust Control

The part provided by Systems Control Theory Laboratory of lectures
of ‘Frontiers of System Creation Technologies’ (システム創成学特論)
explain an introduction of robust control.

Schedule
The first half (Prof. Yamashita;山下裕): Robustness, robust
stability, 𝐻∞-norm, 𝐿2-gain, Riccati-equation
The latter half (Prof. Kobayashi;小林孝一): Linear matrix
inequality (LMI), Schur compliment, Conversion of
Riccati-equation, Various constraints and their LMI expressions
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What is ‘Robustness ?’

Robustness in dictionary
The quality or condition of being strong and in good condition.
The ability to withstand or overcome adverse conditions or
rigorous testing.

For control systems,
Qualities to be protected are

Stability, Output Precesion, Fast convergence, ...
Adverse conditions are

System perturbation, Disturbance (e.g. Noises), ....
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Evaluations of gains
To evaluate the effects of the disturbances on the output, some
concepts of gains are useful, which are indices of the robustness on
the accuracy of an output against disturbances.

Controller

Controlled object
Noises

States

Outputs

Inputs

Closed-loop system

Assumption
The closed-loop system is
stable.
Gain for the angular
frequency 𝜔: ‖𝐺(𝑗𝜔)‖

We consider the following two cases:
White noise case: A white noise includes all frequency
components evenly. ⇒ The power spectrum of the white noise is
flat.
Worst disturbance case: A disturbance that includes only the
following frequency component is worst for the output:

𝜔worst = argmax
𝜔

‖𝐺(𝑗𝜔)‖.
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White noise

Fourier transform cannot be applied to white noises
White noise: 𝑤(𝑡) (𝐄[𝑤] = 0, 𝐄[𝑤(𝑡)𝑤(𝑡 + 𝜏)] = 𝜎2𝛿(𝜏)) ⇒

𝑤𝑇(𝑡) =
{

𝑤(𝑡) (0 ≤ 𝑡 ≤ 𝑇 )
0 (otherwise)

Fourier transform: 𝑊𝑇(𝜔) = ∫
𝑇

0
𝑤(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 (It exists!)

Inverse Fourier transform: 𝑤𝑇(𝑡) = 1
2𝜋 ∫

∞

−∞
𝑊𝑇(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

Power spectrum density (PSD): 𝑆(𝜔) = lim
𝑇 →∞

1
𝑇

𝑊𝑇(𝜔)∗𝑊𝑇(𝜔) = 𝜎2

(Theorem of Wiener-Khintchine)
Average 𝐿2 norm of 𝑤(𝑡) does not exist:

‖𝑤(⋅)‖2
2,ave = lim

𝑇 →∞
1
𝑇 ∫

𝑇

0
|𝑤(𝑡)|2𝑑𝑡 = 1

2𝜋 ∫
∞

−∞
𝑆(𝜔)𝑑𝜔 = ∞
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𝐻2-norm
Consider an SISO case with a white noise.

System: 𝐺(𝑠), Input: 𝑤(𝑡), Output: 𝑧(𝑡)
We assume that the initial state is at the origin.

Average 𝐿2 norm of the output 𝑧(𝑡): (𝑧𝑇(𝑡): output under
𝑤 = 𝑤𝑇(𝑡))

‖𝑧(⋅)‖2
2,ave = lim

𝑇 →∞
1
𝑇 ∫

𝑇

0
|𝑧(𝑡)|2𝑑𝑡 = lim

𝑇 →∞
1
𝑇 ∫

∞

0
|𝑧𝑇(𝑡)|2𝑑𝑡

Parseval’s theorem:
‖𝑧(⋅)‖2

2,ave = 1
2𝜋 ∫

∞

−∞
|𝐺(𝑗𝜔)|2 ⋅ lim

𝑇 →∞
1
𝑇

|𝑊𝑇(𝜔)|2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝜎2(const)

𝑑𝜔

⇒ PSD of output

Therefore,
‖𝑧(⋅)‖2

2,ave

𝜎2 = 1
2𝜋 ∫

∞

−∞
|𝐺(𝑗𝜔)|2𝑑𝜔

Definition of 𝐻2-norm of stable SISO systems

‖𝐺(𝑠)‖2 =
√

1
2𝜋 ∫

∞

−∞
|𝐺(𝑗𝜔)|2𝑑𝜔
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𝐻2-norm for MIMO case

We can extend the notion of 𝐻2-norm to MIMO systems.

Definition of 𝐻2-norm of stable MIMO systems

‖𝐺(𝑠)‖2 =
√

1
2𝜋 ∫

∞

−∞
trace[𝐺(𝑗𝜔)∗𝐺(𝑗𝜔)]𝑑𝜔

It means the ratio between 𝜎, which indicates the amplitude of the
noise, and the average 𝐿2-norm of 𝑧(𝑡)

‖𝑧(⋅)‖2 = √ lim
𝑇 →∞

1
𝑇 ∫

𝑇

0
𝑧(𝑡)⊤𝑧(𝑡)𝑑𝑡

when 𝑤(𝑡) is a vector of white noises.
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Worst disturbance

Consider more general disturbance.

When the 𝐿2-norm of the disturbance is fixed as

‖𝑤(⋅)‖2
2 = ∫

∞

0
|𝑤(𝑡)|2𝑑𝑡 = 1

2𝜋 ∫
∞

−∞
|𝑊 (𝑗𝜔)|2𝑑𝜔 = 𝜎2,

we consider the maximization of

‖𝑧(⋅)‖2
2 = 1

2𝜋 ∫
∞

−∞
|𝐺(𝑗𝜔)|2 ⋅ |𝑊 (𝑗𝜔)|2𝑑𝜔.

Worst disturbance for the output

|𝑊 (𝑗𝜔)|2 = 2𝜋𝜎2 𝛿(𝜔 − 𝜔worst) + 𝛿(𝜔 + 𝜔worst)
2

𝜔worst = argmax
𝜔≥0

|𝐺(𝑗𝜔)|
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𝐻∞-norm

Under the worst disturbance, ‖𝑧(⋅)‖2/‖𝑤(⋅)‖2 coincides with the
maximum value of |𝐺(𝑗𝜔)|.

Assumptions
𝐺(𝑠) is stable.
Initial condition: 𝑥(0) = 0.

𝐻∞-norm for SISO systems

‖𝐺(𝑠)‖∞ = sup
𝜔

|𝐺(𝑗𝜔)| (= sup
‖𝑤‖2≠0,𝑤∈𝐿2

‖𝑧(⋅)‖2
‖𝑤(⋅)‖2 )

𝐻∞-norm for MIMO systems

‖𝐺(𝑠)‖∞ = sup
𝜔

max
𝑖

𝜎𝑖[𝐺(𝑗𝜔)] (= sup
‖𝑤‖2≠0,𝑤∈𝐿2

‖𝑧(⋅)‖2
‖𝑤(⋅)‖2 )

𝜎𝑖[𝐺]: 𝑖-th singular value of a matrix 𝐺
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Another meaning of 𝐻2-norm

For SISO systems, 𝐻2-norm satisfies the following equation:

‖𝐺(𝑠)‖2 = sup
‖𝑤‖2≠0

‖𝑧(⋅)‖∞
‖𝑤(⋅)‖2

= sup
‖𝑤‖2≠0

sup𝑇|𝑧(𝑇 )|
‖𝑤(⋅)‖2

Proof: Let 𝑔(𝑡) denote the impulse response of 𝐺(𝑠). Then,

|𝑧(𝑇 )|2 = |∫
𝑇

0
𝑔(𝑡)𝑤(𝑇 − 𝑡)𝑑𝑡|

2
≤ ∫

𝑇

0
𝑔(𝑡)2𝑑𝑡 ⋅ ∫

𝑇

0
𝑤(𝑡)2𝑑𝑡

≤ ‖𝐺(𝑠)‖2
2 ⋅ ‖𝑤(⋅)‖2

2

holds. For the disturbance 𝑤(𝑡) = 𝑔(𝑇 − 𝑡)/√∫𝑇
0 𝑔(𝜏)2𝑑𝜏, the above

inequality becomes an equality |𝑧(𝑇 )| = √∫𝑇
0 𝑔(𝑡)2𝑑𝑡. Note that

‖𝑤(⋅)‖2 = 1. By making 𝑇 → ∞, we obtain |𝑧(𝑇 )| → ‖𝐺(𝑠)‖2.
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Robust stability

Robust stability
The property that the stability is robust against system
perturbation.
Several stability margins are proposed.
Theoretically, the robust stability can be explained by the notion
of 𝐻∞-norm and small-gain theorem.
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Small gain theorem

Let 𝐺0(𝑠) be a stable transfer function.

G0(s)
–

+

Small gain theorem
The above closed-loop system is stable, if ‖𝐺0(𝑠)‖∞ < 1.

For SISO systems, the small gain theorem can be proven by the
notion of Nyquist plot.
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S-G theorem for cascaded system with uncertainty
We assume that 𝐺0(𝑠) is decomposed as 𝐺0(𝑠) = 𝐺𝑈(𝑠)𝐺𝐾(𝑠), where
𝐺𝑈(𝑠) is an unknown stable transfer-function (square) matrix except
an upperbound of its gain 𝐿(𝜔) ≥ 𝜎max[𝐺𝑈(𝑗𝜔)].

G0(s)

GU(s) GK(s)

KnownUnknown except gain upperbound

Suppose that there exists a stable transfer function 𝐺f ilter(𝑠) such that
|𝐺f ilter(𝑗𝜔)| = 𝐿(𝜔). Then, we obtain 𝐺0(𝑠) = 𝐺𝑈2(𝑠) ⋅ (𝐺f ilter(𝑠)𝐺𝐾(𝑠)),
where ‖𝐺𝑈2(𝑠)‖∞ ≤ 1.

G0(s)

Gfilter(s)I GK(s)

KnownUnknown

GU2(s)

GU(s)

–

+

Stability condition of the closed-loop
system: ‖𝐺f ilter(𝑠)𝐺𝐾(𝑠)‖∞ < 1

Prof. Yuh Yamashita (山下　裕) Frontiers of System Creation Technologies

System including uncertainty
Consider the case where the actual plant consists of a nominal plant
𝐺1(𝑠) and stable unknown part 𝐺𝑈(𝑠). The upper bound of ‖𝐺𝑈(𝑠)‖∞
is known as 𝐿(𝜔).

GU(s)

G1(s)

Unknown

–

+
+

+

Nominal plant

Actual plant

Known L

SISO-system case where L(ω) is constant

Small gain theorem derives the following condition.
Stability condition

Nominal closed-loop system 𝐺(𝑠)(𝐼 + 𝐺(𝑠))−1 is stable.
𝐿(𝜔)𝜎max[(𝐼 + 𝐺1(𝑗𝜔))−1] < 1 ⇔ 𝐿(𝜔) < 𝜎min[𝐼 + 𝐺1(𝑗𝜔)] (∀𝜔 ∈ ℝ)
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More general case

Nominal plant

Actual plant

Known

Controller

w2

w1

u

z1

w3

z2

Sensor

noises

y

GU(s)Filter

System

noises

Unknown In state-feedback
cases, 𝑦 = 𝑥 and
𝑤3 = 0.
It is assumed that the
nominal closed-loop
system is stable.
‖𝐺𝑈(𝑠)‖∞ ≤ 1

Robust stability condition: [𝐻∞-norm from 𝑤1 to 𝑧1] < 1
Performance criterion: (𝛾: small value)
[𝐻2 or 𝐻∞-norm from (𝑤2, 𝑤3) to (𝑧2, 𝑘𝑢)] ≤ 𝛾
⇒ Combined condition:
[𝐻∞-norm from (𝑤1, 𝑤2, 𝑤3) to (𝑧1, 𝛾−1𝑧2, 𝑘′𝑢)] < 1
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Notations

We denote a transfer matrix 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 as

𝐺(𝑠) = [
𝐴 𝐵
𝐶 𝐷 ] . (

𝑥̇ = 𝐴𝑥 + 𝐵𝑤
𝑧 = 𝐶𝑥 + 𝐷𝑤)

A rational-function matrix 𝐺(𝑠) is called proper, if
𝜎max[𝐺(∞)] < ∞.

𝐺(𝑠) is proper ⇔ 𝐺(𝑠) can be expressed as [
𝐴 𝐵
𝐶 𝐷 ]

𝐺(𝑠) belongs to 𝑅𝐻∞, if 𝐺(𝑠) is a stable proper rational-function
matrix.

𝐺(𝑠) ∈ 𝑅𝐻∞ ⇔ 𝐺(𝑠) = [
𝐴 𝐵
𝐶 𝐷 ] , Re 𝜆[𝐴] < 0
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Lyapunov equation

Positive definite matrix
A real symmetric matrix 𝑃 is called to be positive definite, if 𝑥⊤𝑃 𝑥 > 0
for all 𝑥 (≠ 0).

A matrix 𝑃 is positive definite, if and only if all eigenvalues of 𝑃
are positive.
The positive definiteness of 𝑃 is simply denoted by 𝑃 ≻ 0.

Theorem
A linear autonomous system 𝑥̇ = 𝐴𝑥 is (globally) asymptotically
stable, if and only if, for a positive matrix 𝑄, there exists a positive
definite matrix 𝑃 such that

𝑃 𝐴 + 𝐴⊤𝑃 = −𝑄 (Lyapunov equation).

Lyapunov function: 𝑉 (𝑥) = 𝑥⊤𝑃 𝑥 > 0, ∀𝑥 ≠ 0

̇𝑉 = 𝑥⊤(𝑃 𝐴 + 𝐴⊤𝑃 )𝑥 = −𝑥⊤𝑄𝑥 ≤ −min
𝑖

𝜆𝑖(𝑄)‖𝑥‖2 ≤ −
min𝑖 𝜆𝑖(𝑄)
max𝑖 𝜆𝑖(𝑃 )

𝑉
⟹ 𝑉 (𝑥(𝑡)) → 0 (𝑡 → ∞) ⟹ 𝑥(𝑡) → 0 (𝑡 → ∞).
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Conditions of 𝐻∞-norm in state space (1)

We investigate a condition of ‖𝐺(𝑠)‖∞ ≤ 𝛾 for a fixed 𝛾, in the
state-space expression.
‖𝐺(𝑠)‖∞ ≤ 𝛾 ⇔

‖𝑧(⋅)‖2
‖𝑤(⋅)‖2

≤ 𝛾 ⇔ 𝐽 = ∫
∞

0
𝑧⊤𝑧 − 𝛾2𝑤⊤𝑤𝑑𝑡 ≤ 0 (𝑥(0) = 0)

Worst disturbance 𝑤: A disturbance 𝑤 that maximizes 𝐽.
Assumption: 𝐷 = 0

Riccati equation and worst disturbance
Riccati equation: 𝐴⊤𝑋 + 𝑋𝐴 + 𝛾−2𝑋𝐵𝐵⊤𝑋 + 𝐶⊤𝐶 = 0, 𝑋 ≻ 0
Worst disturbance: 𝑤∗ = 1

𝛾2 𝐵⊤𝑋𝑥
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Conditions of 𝐻∞-norm in state space (2)
If a positive-definite solution 𝑋 of the Riccati equation exists, then

𝑥(𝑇 )⊤𝑋𝑥(𝑇 ) − 𝑥(0)⊤𝑋𝑥(0) = ∫
𝑇

0
(𝐴𝑥 + 𝐵𝑤)⊤𝑋𝑥 + 𝑥⊤𝑋(𝐴𝑥 + 𝐵𝑤)𝑑𝑡

= ∫
𝑇

0
𝑤⊤𝐵⊤𝑋𝑥 + 𝑥⊤𝑋𝐵𝑤 − 𝑥⊤𝐶⊤𝐶𝑥 − 𝛾−2𝑥⊤𝑋𝐵𝐵⊤𝑋𝑥𝑑𝑡

= ∫
𝑇

0
−𝛾2(𝑤 − 𝑤∗)⊤(𝑤 − 𝑤∗) − 𝑥⊤𝐶⊤𝐶𝑥 + 𝛾2𝑤⊤𝑤𝑑𝑡

≤ ∫
𝑇

0
−‖𝑧‖2 + 𝛾2‖𝑤‖2𝑑𝑡 = −𝐽.

Therefore, 𝐿2-gain condition is satisfied when 𝑥(0) = 0.
The uniqueness of the solution of the Riccati equation is not
guaranteed.
Internal stability under the disturbance 𝑤 = 𝑤∗(𝑥) is not
guaranteed.
A solution 𝑋 under which the system with 𝑤 = 𝑤∗ is stable is
called a stabilizing solution.
A stabilizing solution is positive definite.
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Conditions of 𝐻∞-norm in state space (3)
The Riccati equation can be relaxed as a Riccati inequality.
The result can be extended to the cases with 𝐷 ≠ 0.

Theorem
The following three conditions are equivalent:

1 ‖𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷‖∞ < 𝛾
2 𝛾2𝐼 − 𝐷⊤𝐷 ≻ 0, and there exists a positive-definite solution 𝑋 of

Riccati inequality

𝐴⊤𝑋 + 𝑋𝐴

+ (𝑋𝐵 + 𝐶⊤𝐷)(𝛾2𝐼 − 𝐷⊤𝐷)−1(𝐵⊤𝑋 + 𝐷⊤𝐶⊤) + 𝐶⊤𝐶 ≺ 0.

3 The following LMI (Linear Matrix Ineqality) holds:

⎡
⎢
⎢
⎣

𝑋𝐴 + 𝐴⊤𝑋 𝑋𝐵 𝐶⊤

𝐵⊤𝑋 −𝛾𝐼 𝐷⊤

𝐶⊤ 𝐷 −𝛾𝐼

⎤
⎥
⎥
⎦

≺ 0, 𝑋 ≻ 0.
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Conditions of 𝐻2-norm in state space

𝐻2-norm can be also obtained by state-space calculation.
The stability of the system is assumed.
𝐷 = 0 is assumed. (𝐻2-norm does not exist, when 𝐷 ≠ 0.)

Observability Gramian:

𝐿𝑂 = ∫
∞

0
𝑒𝐴⊤𝑡𝐶⊤𝐶𝑒𝐴𝑡𝑑𝑡 ≻ 0

It can be obtained from a Lyapunov equation

𝐴⊤𝐿𝑂 + 𝐿𝑂𝐴 + 𝐶⊤𝐶 = 0

𝐻2-norm calculation in the state space

‖𝐺(𝑠)‖2 =
√∫

∞

0
trace[𝐵⊤𝑒𝐴⊤𝑡𝐶⊤𝐶𝑒𝐴𝑡𝐵]𝑑𝑡 = √trace[𝐵⊤𝐿𝑂𝐵]
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𝐻∞ control problem (1)

Controlled object:
𝑥̇ = 𝐴𝑥 + 𝐵1𝑤 + 𝐵2𝑢
𝑧 = 𝐶𝑥 + 𝐷1𝑤 + 𝐷2𝑢

𝑥 ∈ ℝ𝑛: state, 𝑤 ∈ ℝ𝑚: disturbance (noise)
𝑢 ∈ ℝℓ: control input, 𝑧 ∈ ℝ𝑝: evaluation output

Problem setting (in frequency domain)
Obtain a state feedback 𝑢 = 𝛼(𝑥) that makes 𝐻∞-norm from 𝑤 to 𝑧
less than or equal to a given positive value 𝛾.

Assumptions: To simplify the problem, we make the following
assumptions.

𝐷1 = 0, 𝐶⊤𝐷2 = 0 (Condition of orthogonality), rank 𝐷2 = ℓ
(𝐴, 𝐵2): Stabilizable, (𝐴, 𝐶): Detectable

Prof. Yuh Yamashita (山下　裕) Frontiers of System Creation Technologies

𝐻∞ control problem (2)

Under the assumptions, there exists an orthogonal matrix 𝑇 (𝑇 ⊤𝑇 = 𝐼)
such that

𝑧 = 𝐶𝑥 + 𝐷2𝑢 = 𝑇 ( [
𝐶0
0 ] 𝑥

⏟
Term for control performance

+ [
0

𝐷20] 𝑢
⏟⏟⏟

Term for input magnitude

) .

The 𝐿2-norm of 𝑧 becomes

‖𝑧(⋅)‖2 =
√∫

∞

0
(𝐶𝑥 + 𝐷2𝑢)⊤(𝐶𝑥 + 𝐷2𝑢)𝑑𝑡

=
√∫

∞

0
𝑥⊤𝐶⊤𝐶𝑥 + 𝑢⊤𝐷⊤

2 𝐷2𝑢𝑑𝑡
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𝐻∞ control problem (3)

The problem is equivalent to the following new problem:

Problem setting (in time domain)
Obtain a feedback 𝑢 = 𝐾2𝑥 that makes the performance criterion

𝐽(𝑥0, 𝑤, 𝑢) = ∫
∞

0
‖𝑧(𝜏)‖2 − 𝛾2‖𝑤(𝜏)‖2 𝑑𝜏

non-positive for all 𝑤(⋅), when 𝑥(0) = 0.

From assumptions,

𝐽(𝑥0, 𝑤, 𝑢) = ∫
∞

0
𝑥⊤𝐶⊤𝐶𝑥 + 𝑢⊤𝐷⊤

2 𝐷2𝑢 − 𝛾2𝑤⊤𝑤 𝑑𝑡
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Zero-sum differential game

Zero-sum differential game on 𝐻∞ control
One player who can manipulates 𝑢 aims to minimize 𝐽.
Another player who can manipulates 𝑤 aims to maximize 𝐽.

Problem
Find optimal strategy (control law) for players

𝑤 = 𝐾∗
1 𝑥 (𝗐𝗈𝗋𝗌𝗍 𝖽𝗂𝗌𝗍𝗎𝗋𝖻𝖺𝗇𝖼𝖾)

𝑢 = 𝐾∗
2 𝑥 (𝗈𝗉𝗍𝗂𝗆𝖺𝗅 𝗂𝗇𝗉𝗎𝗍)

such that

𝐽(𝑥0, 𝑤, 𝐾∗
2 𝑥) ≤ 𝐽(𝑥0, 𝐾∗

1 𝑥, 𝐾∗
2 𝑥) ≤ 𝐽(𝑥0, 𝐾∗

1 𝑥, 𝑢), ∀𝑤, ∀𝑢 ∈ 𝔘(𝑥0, 𝐾∗
1 ),

if they exist.

𝔘(𝑥0, 𝐾∗
1 ): Set of 𝑢(⋅) such that 𝑥 → 0 (𝑡 → ∞) under 𝑤 = 𝐾∗

1 𝑥.
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Solution of the differential game

Riccati equation

𝑋𝐴 + 𝐴⊤𝑋 + 𝐶⊤𝐶 + 𝑋 (
1
𝛾2 𝐵1𝐵⊤

1 − 𝐵2𝑅−1𝐵⊤
2 ) 𝑋 = 0, 𝑋 ≻ 0

𝑅 = 𝐷⊤
2 𝐷2 (≻ 0)

Multiple positive definite solution may exist.
We adopt a stabilizing solution 𝑋 such that
𝐴 + (1/𝛾2)𝐵1𝐵⊤

1 𝑋 − 𝐵2𝑅−1𝐵⊤
2 𝑋 is stable.

Solution of the differential game

𝑤 = 𝐾∗
1 𝑥 = 1

𝛾2 𝐵⊤
1 𝑋𝑥

𝑢 = 𝐾∗
2 𝑥 = −𝑅−1𝐵⊤

2 𝑋𝑥
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Riccati inequality

When we only need
𝐿2-gain from 𝑤 to 𝑧 that is less than or equal to 𝛾, and
Stability when 𝑤 = 0,

the Riccati equation can be relaxed to a Riccati inequality

𝑋𝐴 + 𝐴⊤𝑋 + 𝐶⊤𝐶 + 𝑋 (
1
𝛾2 𝐵1𝐵⊤

1 − 𝐵2𝑅−1𝐵⊤
2 ) 𝑋 ⪯ 0, 𝑋 ≻ 0,

and its solution does not have to be a stabilizing solution.

Under the feedback 𝑢 = −𝑅−1𝐵⊤
2 𝑋𝑥,

𝑥(𝑇 )⊤𝑋𝑥(𝑇 ) − 𝑥(0)⊤𝑋𝑥(0) + ∫
𝑇

0
‖𝑧‖2 − 𝛾2‖𝑤‖2𝑑𝑡 ≤ 0, ∀𝑤

holds. ⇒ 𝐿2-gain condition is satisfied when 𝑥(0) = 0.
For a Lyapunov function 𝑉 (𝑥) = 𝑥𝑇𝑋𝑥, when 𝑤 = 0, ̇𝑉 ≤ −‖𝑧‖2

holds. Hence, from the detectability, the system is stable.
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Summary

𝐻2-norm evaluates the gain for the white noises.
𝐻∞-norm evaluates the gain for a worst disturbance.
𝐻∞-norm can be identified as an 𝐿2-gain in state space.
Robust stability condition can be converted to an 𝐻∞-norm
condition via the small-gain theorem.
The 𝐻∞-norm condition can be expressed by a solvability
condition of a Riccati equation (inequality).
𝐻∞ control problem can be solved via a Riccati equation
(inequality) also.
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